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Abstract

The Carbon Monitoring for Action (CARMA) database provides information about the carbon dioxide 
emissions, electricity production, corporate ownership, and location of  more than 60,000 power plants in 
over 200 countries. Originally launched in 2007, CARMA is provided freely to the public at www.carma.
org and remains the only comprehensive data source of  its kind. This paper documents the methodology 
underpinning CARMA v3.0, released in July, 2012. Comparison of  CARMA model output with reported 
data highlights the general difficulty of  precisely predicting annual electricity generation for a given plant 
and year. Estimating the rate at which a plant emits CO2 (per unit of  electricity generated) generally faces 
fewer obstacles. Ultimately, greater disclosure of  plant-specific data is needed to overcome these limitations, 
particularly in major emitting countries like China, Russia, and Japan. For any given plant in CARMA v3.0, it 
is estimated that the reported value is within 20 percent of  the actual value in 85 percent of  cases for CO2 
intensity, 75 percent for annual CO2 emissions, and 45 percent for annual electricity generation. CARMA’s 
prediction models are shown to offer significantly better estimates than more naïve approaches to estimating 
plant-specific performance.

CARMA v3.0 also includes a significant upgrade in the quantity and quality of  geographic data, including 
standardized geopolitical information for nearly all facilities. High-precision coordinates are now available for 
10 percent of  plants (covering 30% of  global CO2 emissions) and approximate coordinates are available for 
an additional 70 percent of  facilities. The new version also lays the technical groundwork for future expansion 
to green house gases other than CO2, offering potential improvement in continental-scale modeling of  the 
environmental and health consequences of  conventional pollutants.
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Foreword 

The Center for Global Development launched the Carbon Monitoring for Action (CARMA) 

database (www.carma.org) in 2007 to make available to the public data on the carbon diox-

ide emissions of more than 50,000 power plants. The motivations were, and still are, to lay 

the informational groundwork for any market-based system of emissions regulation, as well 

as to apply the pressure of public disclosure on power companies to reduce emissions. It 

remains the only comprehensive database of its kind. 

In this paper, former CGD research assistant Kevin Ummel explains the most recent up-

dates to the database, CARMA v3.0. CARMA now includes information from public data-

bases from India, Canada, South Africa, the United States, and the European Union, which 

account for more than a third of global power-sector CO2 emissions and a quarter of global 

electricity generation. Version 3.0 quantifies the maximum likely errors in measurement and 

includes more and better information on the location of power plants. It also begins the 

technical work for future versions to monitor other greenhouse gases such as methane, sul-

fur oxides, and nitrogen oxides. 

 

David Roodman 

Senior Fellow 

Center for Global Development 

http://www.carma.org
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1. Introduction 

While national carbon dioxide emissions are regularly published for most countries, data 

specific to individual sectors, companies, geographic regions, or facilities are more difficult 

to obtain – if available at all. This is unfortunate, because disaggregated data are especially 

useful to educators, policymakers, academics, investors, and environmental activists in need 

of information about the carbon footprint of particular entities. Aggregate totals reveal gen-

eral trends, but disaggregated data facilitate specific actions. 

Power generation suits the development of detailed data, because it relies heavily on station-

ary point sources for which information is more likely to be available. The power sector is 

also a major contributor to global climate change, producing 40% of energy-related CO2 

emissions worldwide (IEA 2011). Governmental efforts to collect, process, and disclose 

power plant emissions vary widely. Relatively few countries mandate public disclosure of 

greenhouse gas (GHG) emissions from power plants; still fewer make this information easily 

accessible. Actors requiring comprehensive, global information (for example, investors allo-

cating resources among power companies in global capital markets) are often simply out of 

luck, given the unevenness of disclosure efforts worldwide. 

The Carbon Monitoring for Action (CARMA) database was created in 2007 to help facilitate 

the disclosure, consolidation, and public dissemination of information about the CO2 emis-

sions and electricity generation of individual power plants and companies worldwide. In cas-

es where disclosed data is unavailable, CARMA provides estimates. Wheeler and Ummel 

(2008) provide a description of the original rationale and methodology. A public version of 

the CARMA database is made available through the CARMA website (www.carma.org). 

Over the past year, the CARMA database has been upgraded to include new data sources 

and statistical techniques. The latest version, CARMA v3.0, now includes: 

 Publicly disclosed plant-level CO2 emissions for more than 6,200 power plants in 

the United States, European Union, Canada, India, and South Africa. 

 Publicly disclosed plant-level electricity generation data for more than 5,700 power 

plants in the United States, India, and South Africa, as well as nuclear power plants 

worldwide. 

 Estimates of plant-level CO2 emissions and electricity generation for an additional 

~49,000 power plants in over 200 countries. 

 Aggregate generation and emissions data for ~22,000 power companies and utilities. 

 Aggregate generation and emissions data for ~13,000 geographic regions (countries, 

states/provinces, cities, etc.). 

 High-resolution geographic coordinates for ~6,200 power plants and approximate 

coordinates for an additional ~39,000 facilities. 

 Analysis of the likely prediction error for facilities with statistically-modeled (i.e. es-

timated) generation and emissions data. 

http://www.carma.org/
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2. Summary of methodology 

This section provides an overview of the CARMA v3.0 data sources and methodology. 

Technical details can be found in subsequent sections. 

CARMA’s principal task is to collect and consolidate plant-level generation and emissions 

data made public by national or international authorities. Table 1 shows the status of known 

efforts to disclose plant-level CO2 emissions and/or electricity generation. Links to the origi-

nal databases are listed in Footnote 1. 

These data are made public in various formats and with varying levels of detail, requiring 

that the data be cleaned and standardized before incorporation into CARMA. Worldwide, 

only about 10% of CO2-emitting power plants regularly disclose their emissions to the pub-

lic. However, since disclosure efforts often focus on larger plants, these facilities are collec-

tively responsible for ~35% of global power sector CO2 emissions. 

Table 1: Summary of power plant CO2 and electricity generation disclosure data-

bases1 

 
Facility CO2 
emissions? 

Facility electricity 
generation? 

Emissions coverage 

United States Yes Yes ~100% 

European Union Yes No 63% 

Canada Yes No 91% 

India Yes Yes 78% 

South Africa Yes Yes 96% 

IAEA (nuclear units only) N/A Yes ~100% 

Note: Emissions coverage gives the approximate percentage of total power sector emissions disclosed at the 

plant level. 

                                                      

1 The original databases can be found at the following URLs: 

Canada: http://www.ec.gc.ca/pdb/ghg/onlineData/dataSearch_e.cfm 

European Union: http://www.eea.europa.eu/data-and-maps/data/member-states-reporting-art-7-under-

the-european-pollutant-release-and-transfer-register-e-prtr-regulation-4 

India: http://www.cea.nic.in/reports/planning/cdm_co2/cdm_co2.htm 

International Atomic Energy Agency: http://www.iaea.org/pris/ 

South Africa: http://www.eskom.co.za/c/article/236/cdm-calculations/ 

United States: http://205.254.135.7/cneaf/electricity/forms/datamatrix.html and 

http://ampd.epa.gov/ampd/ 

  

Australia and New Zealand disclose plant-level power generation (not emissions) through the national grid 

operator, but these data are not yet incorporated into CARMA. If you are aware of other relevant disclosure da-

tabases or efforts, please notify CARMA at: carma@cgdev.org 

mailto:carma@cgdev.org
http://www.ec.gc.ca/pdb/ghg/onlineData/dataSearch_e.cfm
http://www.eea.europa.eu/data-and-maps/data/member-states-reporting-art-7-under-the-european-pollutant-release-and-transfer-register-e-prtr-regulation-4
http://www.eea.europa.eu/data-and-maps/data/member-states-reporting-art-7-under-the-european-pollutant-release-and-transfer-register-e-prtr-regulation-4
http://www.cea.nic.in/reports/planning/cdm_co2/cdm_co2.htm
http://www.iaea.org/pris/
http://www.eskom.co.za/c/article/236/cdm-calculations/
http://205.254.135.7/cneaf/electricity/forms/datamatrix.html
http://ampd.epa.gov/ampd/
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For facilities where no public data are available, it is necessary to estimate CO2 emissions and 

electricity generation. A comprehensive listing of the world’s power plants is provided by the 

commercial World Electric Power Plant (WEPP) database maintained by Platts, Inc.2 WEPP 

provides geographic, corporate, and engineering data for individual generating units in over 

200 countries. This information is used as the basis for estimating plant performance in the 

absence of public data. 

When necessary, CARMA estimates power plant performance using statistical models fitted 

to a detailed dataset of U.S. facilities. These models predict key variables like plant capacity 

factor and heat rate as a function of the plant’s size, vintage, technology, and other engineer-

ing and operating characteristics. In addition, national generation, heat rate, and CO2 emis-

sions data from the International Energy Agency (IEA) are used to constrain initial model 

estimates to ensure accurate aggregate totals for the year in question.3 When IEA national-

level data are not available, country-specific generation totals from the U.S. Energy Infor-

mation Administration (EIA) are used instead.4 Details of the model fitting and estimation 

process are described in Section 3. 

CARMA v3.0 also includes internal calculation of generation and emissions data for all U.S. 

power plants (even when disclosed emissions data are not available), relying on detailed da-

tasets from the EIA and Environmental Protection Agency (EPA). This means CARMA is 

potentially capable of disclosing preliminary U.S. power plant data about 3-6 months after 

the end of the calendar year. However, disclosure and estimation of international data face 

greater delays, typically dictated by the release of annual IEA and EIA national-level datasets. 

Figure 1 illustrates the full CARMA v3.0 processing chain from inputs to final product. 

One objective of this paper is to describe the likely error associated with estimated data. 

CARMA effectively reports two quantities: plant capacity factor (i.e. rate of utilization) and 

CO2 intensity (i.e. rate of CO2 emission per unit electricity). Wheeler and Ummel (2008) note 

that plant capacity factor is highly variable – even from year to year for the same facility. 

This variability is driven, in part, by financial, regulatory, and maintenance considerations 

that are largely unobservable. This makes prediction of electricity generation for a given 

plant and year the largest source of error within CARMA. Estimation of CO2 intensity faces 

fewer obstacles, as this is driven largely by observable fuel and engineering characteristics. 

Assessment of model skill and analysis of year-to-year variability are provided in Sections 4 

and 5. The effect of plant aggregation on prediction error is discussed in Section 6. 

After constructing plant-level CO2 emissions and electricity generation data from a combina-

tion of disclosed data and model estimates, geographic data are added. CARMA v3.0 in-

cludes substantial advances in geocoding of individual facilities. Specifically, geopolitical data 

                                                      

2http://www.platts.com/Products/worldelectricpowerplantsdatabase 
3http://data.iea.org/ieastore/wedproduct.asp?dept_id=101&pf_id=205 

http://data.iea.org/ieastore/product.asp?dept_id=101&pf_id=305 
4http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=12 

http://www.platts.com/Products/worldelectricpowerplantsdatabase
http://data.iea.org/ieastore/product.asp?dept_id=101&pf_id=305
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=12
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provided by WEPP (city, region, etc.) have been processed with “fuzzy string” algorithms to 

standardize spellings, extract maximum information, and create concordance with the open-

source GeoNames database (www.geonames.org). The final CARMA database includes this 

information along with approximate plant coordinates for ~39,000 plants and high-

resolution coordinates for another ~5,900 (see Section 7). 

Figure 1: CARMA v3.0 data processing chain 

 

Each plant in CARMA is also assigned corporate ownership data. CARMA attempts to re-

port the ultimate, primary owner of each facility (i.e. the highest entity in the corporate hier-

archy). The data comes primarily from WEPP, which attempts to track ownership relation-

ships and hierarchies in the power sector. The ultimate owner may differ from the local op-

erator/owner. For example, the Scherer coal power plant in Juliette, Georgia is operated by 

Georgia Power Co., but the ultimate owner is Southern Company. If an ultimate owner can-

not be identified, the plant operator (often a utility company) is reported instead. 

  

http://www.geonames.org/
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3. Detailed methodology 

For plants that do not disclose electricity generation or CO2 emissions, it is necessary to es-

timate values. Note that estimation is necessary only for a subset of power plants outside the 

U.S. since the electricity generation and CO2 emissions of all U.S. facilities are effectively 

disclosed. The basic approach, as outlined in Section 2, is to use statistical models fitted to 

U.S. data to predict the performance of non-disclosing plants elsewhere in the world (i.e. 

those not disclosed through the databases listed in Table 1). This involves five steps: 

1. Create concordance between variables found in U.S. datasets and those in the global 

WEPP database. 

2. Process U.S. datasets to extract maximum information regarding PGU operation at 

monthly time scales. 

3. Fit regression models to U.S. monthly data that predict PGU performance as a 

function of variables available in WEPP. 

4. Predict the annual performance of PGU's using fitted models, applying national-

level adjustments to restrain initial model estimates. 

5. Integrate any disclosed data and replace or update model estimates as necessary. 

Before describing methodological details, it is helpful to explain the nomenclature used to 

describe power plants and their characteristics. Many power plants are actually a collection of 

power generation units (PGU’s), each typically consisting of a generator and, for certain 

combustion technologies, one or more boilers. In most cases, a generator produces electrici-

ty when its turbine is moved by a working fluid (e.g. steam, gas, water, wind, etc.). In a con-

ventional steam turbine, fuel is burned in a boiler to produce the required steam. In a com-

bustion turbine, the pressure produced by direct gas combustion moves the turbine. In 

combined cycle systems, heat is recovered from combustion turbine exhaust gas to produce 

steam that moves an additional turbine, resulting in higher overall efficiency. 

3.1 Creating concordance across databases 

It is useful to classify a PGU by a combination of its prime mover technology and primary fuel. For 

example, a conventional coal power plant's prime mover is a steam turbine and primary fuel 

is coal. In CARMA, the PGU's associated with this plant are classified on this basis using a 

set of codes that have been standardized to create concordance across all of CARMA's input 

databases. In this case, the PGU type is “ST_COAL” (i.e. prime mover_primary fuel). A con-

ventional hydroelectric dam is classified as “HY_WAT” (hydraulic turbine and water). Table 

2 describes the suite of PGU types classified in CARMA, whether they emit CO2, and the 

share of global generating capacity in 2009. Notice that units with biofuels as the primary 

fuel are not listed as CO2 emitters, as the carbon comes from recent biological fixation. 
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Table 2: Description of PGU “Type” variable 

PGU Type Prime Mover Primary Fuel 
CO2 Emit-
ter? 

% of Global Ca-
pacity 

ST_COAL Steam turbine Coal Yes 32.853% 

HY_WAT Hydraulic turbine Water No 19.035% 

CC_FGAS Combined cycle Fossil fuel gas Yes 13.557% 

ST_NUC Steam turbine Nuclear No 7.980% 

ST_FGAS Steam turbine Fossil fuel gas Yes 7.423% 

GT_FGAS Combustion (gas) turbine Fossil fuel gas Yes 5.837% 

ST_FLIQ Steam turbine Fossil fuel liquid Yes 4.975% 

WT_WIND Wind turbine Wind No 2.404% 

GT_FLIQ Combustion (gas) turbine Fossil fuel liquid Yes 2.187% 

IC_FLIQ Internal combustion engine Fossil fuel liquid Yes 1.301% 

ST_BSOL Steam turbine Biomass No 0.795% 

CC_FLIQ Combined cycle Fossil fuel liquid Yes 0.550% 

IC_FGAS Internal combustion engine Fossil fuel gas Yes 0.325% 

OT_EMIT Other N/A Yes 0.286% 

ST_GEO Steam turbine Geothermal No 0.224% 

ST_WSTH Steam turbine Waste heat No 0.082% 

IC_BGAS Internal combustion engine Biogas No 0.073% 

PV_SUN Photovoltaic Sun No 0.061% 

ST_SUN Steam turbine Sun No 0.015% 

IC_BLIQ Internal combustion engine Bioliquid No 0.009% 

ST_BGAS Steam turbine Biogas No 0.008% 

GT_BGAS Combustion (gas) turbine Biogas No 0.007% 

CC_BLIQ Combined cycle Bioliquid No 0.006% 

CC_BGAS Combined cycle Biogas No 0.004% 

OT_NOEMIT Other N/A No 0.002% 

GT_BLIQ Combustion (gas) turbine Bioliquid No 0.001% 

CC_BSOL Combined cycle Biomass No 0.000% 

GT_WSTH Combustion (gas) turbine Waste heat No 0.000% 
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U.S. EIA Form 860 reports annual data on generator capacity, age, and design steam flow, as 

well as a suite of variables describing the status of pollution control technologies at U.S. 

PGU's. The WEPP database provides an additional set of data about PGU's worldwide (in-

cluding U.S. units) from which it is often possible to extract variables similar those found in 

the EIA-860. For example, it is possible to extract information about the presence of pollu-

tion control technologies from PGU descriptions in WEPP and create code concordance 

with similar data from EIA-860. Table 3 reports the suite of PGU-specific variables for 

which concordance was created between EIA datasets and WEPP. Most of the variables are 

0/1 dummies indicating the absence of presence of a particular technology. 

Table 3: Description of additional PGU variables 

PGU Variable Code Notes 

Installed capacity cap Gross electric generating capacity. 

Unit age age Years since reported initial year of operation. 

Generator status sb Operational or standby. 

Business type bustype Utility, manufacturing, etc. (based on NAICS code). 

Electricity production type electype Utility, auto-producer, or private generator. 

Combined heat and power (CHP) 
status 

chp District heating, heat recovery for desalinization, etc. 

Design maximum steam flow 
(steam-based units only) 

sflow If unavailable in WEPP, imputed using PGU type, capaci-
ty, age, status, design steam pressure, and design steam 
temperature. 

Supercritical combustion status 
(sub-, super-, or ultra-) 

super Supercritical defined by reported or imputed design steam 
pressure > 240 bar. Ultra-supercritical defined by reported 
or imputed design steam temperature above 593ºC. 

Fluidized bed technology fbt  

Solid fuel gasification sfg  

Activated carbon injection aci Mercury control. 

Carbon capture technology ccap None operational. Included for future use. 

Lime injection system lis  

Wet flue gas desulfurization fgd.wet Jet bubbling reactor, tray, Venturi type, etc. 

Dry flue gas desulfurization fgd.dry Spray, circulating, dry powder injection, etc. 

Baghouse flue gas particulate (FGP) 
control 

fgp.bag Shake and deflate, reverse, pulse, etc. 

Electrostatic precipitator FGP con-
trol 

fgp.esp Cold or hot side. 

Cyclone FGP control fgp.cyc Single or multiple. 

Other FGP control fgp.oth  
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PGU Variable Code Notes 

Staged combustion NOx control nox.stag Overfire air, biased firing, etc. 

Flue gas recirculation NOx control nox.fgr  

Steam/water injection NOx control nox.stm  

Low-NOx burner NOx control nox.lnb  

Selective (non)catalytic reduction 
NOx control 

nox.fgr Includes ammonia injection. 

Burner management system NOx 
control 

nox.ctrl Low excess air, boiler optimization, etc. 

Fuel reburning NOx control nox.burn  

Other NOx control nox.oth  

 

3.2 Extracting monthly performance for U.S. units 

The PGU variables described in Tables 2 and 3 reveal no direct information about the actual 

operation of units (e.g. electricity generation, CO2 emissions, etc.). Operational data for U.S. 

PGU's come from two sources: EIA Form 923 and the EPA Clean Air Markets (CAM) Pro-

gram. 

EIA-923 collects detailed monthly data on the operation of steam-based, organic-fired (i.e. 

fossil fuel) PGU’s at U.S. facilities, as reported by the plant operators. Collected metrics in-

clude net generation, fuel input energy, and fuel characteristics (e.g. fuel heat content, sulfur 

content, etc.). For other facilities (i.e. non-steam and non-fossil fuel), EIA-923 provides simi-

lar monthly data disaggregated by prime mover technology and primary fuel at the plant lev-

el. 

The initial challenge is to process the data to extract maximum information about the opera-

tion of individual PGU's at monthly time scale, or (second-best) information regarding small 

groups of PGU's at a single facility. Because the EIA-923 generation data are specified for 

individual generators while fuel consumption and fuel characteristics are specified for indi-

vidual boilers, it is necessary to appropriately link generators and boilers at a given facility to 

generate aggregate totals for the unit as a whole. Using linkage data provided by the EIA-

860, generator(s)-boiler(s) relationships are deduced at the highest possible resolution.5 The 

                                                      

5In the simplest case, a generator is linked to a single boiler. In more complex cases, a generator may share a 

boiler with other generators (or a generator may be shared across multiple boilers). CARMA's algorithms group 

boilers and/or generators at individual facilities so that aggregate electricity generation and fuel consumption are 

aggregated at the highest possible level of specificity. 
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results are merged with the EIA-923's generation and fuel consumption data specified by 

prime mover technology and fuel type for non-steam and non-fossil fuel facilities. 

An algorithm then combines the operational data from EIA-923 with EIA-860 engineering 

specifications. The end result is a dataset containing monthly electricity generation and fuel 

consumption and characteristics specified at either the individual PGU-level (in the case of 

steam-based facilities) or by PGU “type” at a given facility. 

Table 4 shows representative results for DTE Energy's power plant in Monroe, Michigan for 

the months of September and October, 2009. Data for the “ST_COAL” observations comes 

from the EIA-923 generator- and boiler-specific data (hence, multiple ST_COAL “units”). 

Data for the other “units” come from the plant-level totals at the prime-mover level. Match-

ing against the EIA-860 allows inclusion of the generating capacity (MW) variable along with 

others from Table 3 (not shown in Table 4). Note that the fuel characteristics (heat content, 

sulfur content, and ash content) are, in fact, MMBtu-weighted averages of the various coal 

types in use at the plant. 

Table 4: Example results from processing of U.S. EIA 923 and 860 datasets 

 Monroe, Michigan power plant for September and October, 2009 

Month Type MW 
Net 
MWh 

Fuel in-
put 
(MMBtu) 

Prima-
ry fuel 

Pri-
mary 
fuel % 

Sec-
onda
ry 
fuel 

Sec-
ondary 
fuel % 

Fuel 
heat 
content 

Fuel sul-
fur con-
tent 

Fuel 
ash 
content 

9 IC_FLIQ 13.5 -12 215 FLIQ 100.0 NA NA 59,442 NA NA 

9 ST_COAL 817.2 470,370 4,314,968 COAL 100.0 FLIQ 0.0% 21,673 0.61 6.2 

9 ST_COAL 822.6 327,364 3,224,202 COAL 100.0 FLIQ 0.0% 21,579 0.61 6.3 

9 ST_COAL 817.2 457,673 4,513,724 COAL 100.0 FLIQ 0.0% 21,685 0.61 6.2 

9 ST_COAL 822.6 398,677 3,652,176 COAL 99.6 FLIQ 0.4% 21,709 0.62 6.3 

10 IC_FLIQ 13.5 -41 0 FLIQ 100.0 NA NA 59,546 NA NA 

10 ST_COAL 822.6 469,309 4,019,502 COAL 99.6 FLIQ 0.4% 21,556 0.64 6.3 

10 ST_COAL 817.2 359,102 3,089,002 COAL 99.9 FLIQ 0.1% 21,579 0.64 6.3 

10 ST_COAL 817.2 366,959 3,418,194 COAL 99.9 FLIQ 0.1% 21,944 0.70 6.2 

10 ST_COAL 822.6 340,206 2,763,018 COAL 100.0 FLIQ 0.0% 21,662 0.65 6.2 

 

Finally, CO2 emissions data are added. The EPA’s Clean Air Markets (CAM) database col-

lects data reported by U.S. power plants under various regulatory and emissions trading pro-

grams. The emissions are recorded for individual units (typically boilers) at hourly resolution 

(often from stack measurements) and released quarterly. CARMA aggregates emissions to 

monthly totals and merges with the EIA-derived generation and fuel data. 
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This is complicated by the fact that facility and unit codes are not fully standardized across 

EIA and EPA databases. Consequently, CARMA employs algorithms that analyze fuel input 

and gross generation at the unit-level for both EIA and EPA data to determine when high-

quality matches can be made across databases. Emissions data are not available for all plants 

– or even all PGU's within a given plant. Reporting is determined by the requirements of 

federal regulations, typically restricting observed emissions to larger facilities. 

Continuing with the example data above, Table 5 shows a subset of results after matching 

the EIA-derived results against the EPA CAM emissions database for the Monroe, Michigan 

plant. We can see that only the larger coal units report CO2 in the EPA CAM database. The 

table also shows the results of CARMA's unit-matching algorithm, which links generators 

and boilers on the basis of EIA-860 linkage data and then proceeds to link boiler-generator 

pairings with the emissions reporting units in the EPA CAM data (“EPA CAM Unit ID”), 

using fuel energy input and gross generation data from both sources to identify high-quality 

matches. 

Table 5: Example results from processing of U.S. EPA CAM emissions database 

 Monroe, Michigan power plant for September and October, 2009 

Month Type 
EIA-923 
Generator ID 

EIA-923 
Boiler ID 

EPA CAM 
Unit ID 

CO2 emissions 
(tons) 

9 IC_FLIQ NA NA NA NA 

9 ST_COAL 1 1 13 488,598 

9 ST_COAL 3 3 68 365,224 

9 ST_COAL 4 4 80 511,080 

9 ST_COAL 2 2 57 413,491 

10 IC_FLIQ NA NA NA NA 

10 ST_COAL 2 2 57 455,352 

10 ST_COAL 1 1 13 349,908 

10 ST_COAL 4 4 80 386,644 

10 ST_COAL 3 3 68 312,879 

 

Once the full suite of EIA and EPA operational data are merged, it is possible to calculate 

variables summarizing the critical processes to be modeled. The key quantities to be estimat-

ed by statistical models are annual electricity generation and annual CO2 emissions at the 

plant level. Calculation of these quantities requires knowledge of a plant’s generating capaci-

ty, capacity factor (i.e. rate of utilization), heat rate (i.e. technical efficiency), and emission 

factor (i.e. carbon-intensity of the fuel): 
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Generating Capacity x Capacity Factor = Electricity Generation 

Electricity Generation x Heat Rate x CO2 Emission Factor = Total CO2 Emissions 

Capacity factor (cf), heat rate (hr), and CO2 emission factor (co2.rate) can be calculated from 

the merged EIA/EPA operational data for each unit-month. The capacity factor (cf) for a 

given unit and period is: 

   
       

       
 

where h is the number of hours during the month in question. In practice, net.mwh can be 

negative if a generator is online and consuming electricity but not producing. It can also be 

unusually high if cap is unexpectedly expressed at the net rather than gross installed capacity. 

Consequently, cf is assigned minimum and maximum bounds: 

cf = 0, when 
       

       
   and cf = 1.2, when 

       

       
     

The heat rate (hr) describes the quantity of fuel energy (mmbtu) required to produce a unit of 

electrical energy (net.mwh): 

   
     

       
       , when cf > 0 for units where type is identified as a CO2 emitter 

Multiplying by 1.0551 converts hr to units TJ/GWh. The CO2 emission factor (co2.rate) de-

scribes the amount of CO2 released to the atmosphere (co2.mass) per unit of input fuel energy 

(mmbtu): 

         
        

     
       , for units where type is identified as a CO2 emitter 

Multiplying by 859.86 converts co2.rate to units tCO2 /TJ. 

For both hr and co2.rate, the entirety of the U.S. data are analyzed to determine allowable 

ranges for feasible values in order to remove outliers likely to have resulted from data input 

errors (which are rare, but present, in the EIA data). For each unit type, the lowest feasible 

value is set to 2 times the interquartile range below the 25th percentile; the highest feasible 

value is set to 2 times the interquartile range above the 75th percentile. Observations with hr 

or co2.rate values outside this range are considered erroneous and excluded from further 

analysis.6 

                                                      

6Technical note: The EIA 923 reports gross calorific value (i.e. GCV or gross heat content) of input fuels, 

while the IEA national data report net calorific value (NCV). The EIA values are converted to NCV using default 

derate values from the IEA, or, in the case of coal, the following approximation derived from the U.S. coal analy-

sis of Quick et al. (2005): NCV = GCV(1-X), where X = (-0.43*GCV+16)/100 
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The complete monthly, unit-level U.S. dataset contains approximately 65,000 observations 

for the year 2009. These observations are used to fit statistical models that can then estimate 

the performance of non-disclosing plants outside the U.S. Table 6 reports the cf, hr, and 

co2.rate variables calculated above for the Monroe, Michigan power plant. 

Table 6: Example results after calculation of key performance variables 

 Monroe, Michigan power plant for September and October, 2009 

Month Type Capacity factor (cf) 
Heat rate 
(hr, TJ/GWh) 

CO2 Emissions Rate 
(co2.rate, tCO2/TJ) 

9 IC_FLIQ 0.00 NA NA 

9 ST_COAL 0.80 9.68 97.36 

9 ST_COAL 0.55 10.39 97.40 

9 ST_COAL 0.78 10.40 97.36 

9 ST_COAL 0.67 9.67 97.35 

10 IC_FLIQ 0.00 NA NA 

10 ST_COAL 0.77 9.04 97.41 

10 ST_COAL 0.59 9.08 97.40 

10 ST_COAL 0.60 9.83 97.26 

10 ST_COAL 0.56 8.57 97.37 

3.3 Fitting regression models to U.S. training data 

This section describes the construction of models for predicting the capacity factor, heat rate, 

and CO2 emission factor for non-disclosing power plants. Although the ultimate objective is to 

predict annual, plant-level performance, the models are fit to the previously described da-

taset of monthly, unit-level U.S. “training data” and predictions made using unit-level inde-

pendent variables from WEPP. The unit-level predicted values are then aggregated to the 

plant-level to create the final estimates. The use of highly-disaggregated U.S. training data 

provides a wide range of operating conditions against which to fit the predictive models. 

Before fitting models to the U.S. training data, a number of variables are constructed to 

mimic national-level independent variables available when predicting the annual perfor-

mance of non-disclosing plants outside the U.S. For example, if the goal is to predict the 

capacity factor of a given coal plant in China in 2009, it is very useful to know the average 

capacity factor of all coal plants in China in 2009. And, indeed, this information can be de-

rived by combining fuel-specific electricity generation from the IEA's Extended Energy Bal-

ances with WEPP's data on fuel-specific operational generating capacity. 
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The analogous value for a given coal plant in the U.S. training dataset is the average capacity 

factor for all coal plants within the boundaries of the associated North American Electric 

Reliability Corporation’s (NERC) regional entity. The NERC regions are largely autonomous 

power grids with limited electricity trading and are, therefore, approximately analogous to 

the national boundaries used to tabulate IEA and EIA country-specific aggregate data on 

electricity generation, CO2 emissions, and fuel consumption. In other words, NERC regions 

in the U.S. training data are treated similarly to countries in the IEA, EIA, and WEPP data. 

The following “grid-specific” variables are constructed for each unit in both the U.S. and 

WEPP data, using NERC regions and countries, respectively, as the “grid”. In the case of 

U.S. data, the variables are calculated for each grid-month: 

grid.cap : percentile of a given unit's capacity relative to all other units in the grid 

grid.age : percentile of a given unit's age relative to all other units in the grid 

plant.cap : percentile of total capacity for a given plant relative to all other plants in the grid 

fuel.cf : average grid-wide capacity factor for a given unit's primary fuel 

As with any modeling exercise that attempts out-of-sample predictions or forecasts, there is 

the risk that the training data is unrepresentative of the population for which predictions will 

be generated. There is also the related risk that the models themselves could be “over-fitted” 

(in terms of variable selection and functional form) and, therefore, modeling noise rather 

than underlying relationships that are applicable beyond the training data. 

To address these concerns, two steps are taken. First, the models are fit a stratified random 

sample (n = 50,000) drawn from the complete monthly, unit-level U.S. dataset. The sampling 

weights are empirically derived from the set of non-U.S. units in the WEPP database, using 

unit type, cap, grid.cap, and chp as the stratifying variables. This ensures that the models are fit 

to a dataset where the likelihood of various unit types generally resembles that found in the 

out-of-sample predictor dataset. 

Second, the model fitting process itself makes use of a multivariate adaptive regression 

splines (MARS) algorithm that allows piecewise non-linear relationships and includes a gen-

eralized cross-validation approach for deciding which independent variables and functional 

form to include in the final model. This approach reduces the risk of over-fitting while al-

lowing the selection of independent variables and functional forms to vary across models. 

MARS is implemented via R’s earth package (Milborrow 2012), using the approach of Fried-

man (1991). In short, MARS allows for piece-wise “hinge” functions to be adaptively fit to 

training data – no functional form must be specified beforehand. After adding hinge terms 

until the model’s residual error is stable, a “backward pass” uses a generalized cross valida-

tion criterion to discard terms in an attempt to produce a parsimonious model that avoids 

over-fitting. Given the general absence of a priori information regarding appropriate func-
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tional form – and the significant risk of over-fitting in the presence of so many observations 

and independent variables – MARS provides a good model-fitting process for this context. 

3.3.1 Capacity factor (cf) model 

Two capacity factor models are constructed. One for units where grid.cap<=0.5 (i.e. a model 

predicting the performance of relatively small units), and one for units where grid.cap>0.5. 

This is designed to capture different relationships between variables for small and large 

plants. The dependent variable for the CF models (cf.ind) consists of a [0,1] variable whereby 

each month-unit’s cf is linearly scaled such that fuel.cf for the unit in question is assigned a 

value of 0.5: 

              
            

             
, when cf >= fuel.cf 

       
     

       
, when cf < fuel.cf 

In other words, cf.ind is constructed to measure the extent to which a unit’s observed capaci-

ty factor deviates from the grid-wide capacity factor for units with the same fuel type. This 

approach allows cross-grid variation in the utilization of different unit types to be directly 

incorporated into the modeling framework via the observable fuel.cf variable. Both capacity 

factor models have the same dependent and independent variables (though the MARS algo-

rithm may choose to leave certain dependent variables out of the final model); the only dif-

ference is the subset of data used to fit the model. The form is: 

                                                                      
                 

 

where b0 is the intercept, ɛ is the error term, bi are fitted coefficients, and Bi are basis func-

tions that may consist of a constant, a hinge term, or a product of two hinge terms (i.e. a 2-

degree model is allowed). 

3.3.2 Heat rate (hr) model 

A total of six heat rate models are fitted: two for each of the three dominant emitting fuel 

types (i.e. coal, fossil gas, and fossil liquid), stratified into large and small units by a fuel-

specific cutoff point for cap (200 MW for coal, 50 MW for gas fossil fuel, and 25 MW for 

liquid fossil fuel). All six heat rate models have the same dependent and independent varia-

bles; the only difference is the subset of data used to fit the model. The form is: 
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where            denotes estimation for the suite of engineering and pollution control variables 

described in Table 3. Note that capacity factor (cf) is a dependent variable in the heat rate 

model, since units in regular operation will tend to exhibit greater thermal efficiency. 

3.3.3 CO2 emission factor (co2.rate) model 

A total of three CO2 emission factor models are fitted: one for each of the three dominant 

emitting fuel types (i.e. coal, fossil gas, and fossil liquid). All three CO2 emission factor mod-

els have the same dependent and independent variables; the only difference is the subset of 

data used to fit the model. The form is: 

                                                                 

where            denotes estimation for the suite of engineering and pollution control variables 

described in Table 3. 

3.4 Predicting values for non-disclosed plants 

Each of the models is applied to the WEPP predictor dataset to estimate cf, hr, and co2.rate 

for units worldwide. The prediction algorithm includes country- and fuel-level adjustments 

to ensure that the aggregate totals match those reported in the IEA Extended Energy Bal-

ances. For example, after the models make an initial prediction of capacity factor, all of the 

coal units in China are aggregated and a uniform adjustment is applied to ensure that the 

aggregate predicted capacity factor matches the value implied by the IEA data. Similar ad-

justments are applied for the heat rate and CO2 emission factor, using IEA input fuel energy 

and CO2 emissions data. Predictions are further constrained so as not to exceed the mini-

mum and maximum feasible values as determined by analysis of U.S. data (see Section 3.2). 

A manual heat rate adjustment is also included for supercritical and ultra-supercritical (USC) 

coal-fired units. Such technology is increasingly common in newly-built and planned coal 

plants worldwide, but there are few (or none, in the case of USC) operational units in the 

U.S. training dataset. Analysis of an EPRI (2008) engineering study suggests that each 1% 

increase in steam pressure results in a 0.28% decrease in net heat rate. This relationship is 

linear over the range studied, which includes steam pressure up to 352 bar for future, ad-

vanced USC. This manual adjustment is applied to all coal units with a reported or imputed 

design steam pressure greater than 240 bar (the approximate minimum steam pressure for 

supercritical designation). 

3.5 Integration of disclosed plant data 

Once cf, hr, and, co2.rate predictions are made the unit-level, it is easy to calculate estimated 

annual electricity generation and CO2 emissions using the generating capacity (cap) data pro-

vided by WEPP. The unit-level values are then aggregated to the plant-level. At this point, it 



 

16 

is possible to calculate plant-level CO2 intensity, which is the ratio of total CO2 emissions to 

net electricity production (measured as kgCO2 /MWh). 

Whenever plant-level CO2 emissions or electricity generation are disclosed by a verified, 

public source, it is CARMA’s policy is to replace model estimates with the actual data. Out-

side the U.S., such information is currently available for a subset of power plants in Europe, 

Canada, India, and South Africa, as well as electricity generation for worldwide nuclear pow-

er plants from the IAEA (see Table 1). Disclosure is not universal, which requires that the 

plants in the public databases be matched with WEPP in order to determine which plants are 

not disclosed and in need of estimated values. A limited exception is the U.S., for which dis-

closure coverage is universal, eliminating the need to match EIA plants with WEPP plants. 

However, corporate ownership data is not universal in the EIA data, which means EIA and 

WEPP must, in practice, be matched in order to assign WEPP corporate data to U.S. plants. 

Matching observations in public databases against WEPP can be laborious and error-prone, 

particularly for smaller plants. Power plants names are not standard across databases. In 

some cases, distinct plants in WEPP or a public database must be consolidated to create an 

accurate match. In the EU and Canada, the disclosure databases include emitters from out-

side the power sector (like refineries and factories), making it difficult to narrow the set of 

potential matches. CARMA makes use of algorithms that attempt to identify potential 

matches on the basis of geographic data. Confirmation of matches is usually done manually. 

Efforts to date have identified WEPP matches for ~840 plants in Europe, Canada, South 

Africa, and India and a further ~2,700 U.S. plants. 

For plants with a good match between WEPP and a disclosure database, the disclosed value 

replaces the model estimate(s). If only CO2 emissions are reported (as in the EU and Canada), 

then the CO2 intensity implied by the model estimates is applied to the actual emissions to 

back-out a new estimate of electricity generation. 

Due to the universal plant coverage provided by the EIA, U.S. plant totals in CARMA by-

passes WEPP altogether (except for assignment of corporate ownership data). That is, 

CARMA effectively reports EIA data directly for U.S. facilities. The one exception is small, 

CO2-emitting plants for which emissions are not recorded in the EPA CAM database. In 

such cases, the average co2.rate across observable U.S. plants with similar fuel type is used to 

estimate total CO2 emissions from reported fuel energy consumption. 
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4. Comparison of model estimates and reported values 

To help assess the ability of CARMA’s models to estimate plant performance, a special da-

taset was constructed containing the full set of likely matches between WEPP and public 

disclosure databases, including the U.S. This provided a set of ~3,500 plants (~800 from 

outside the U.S.) for which it is possible to compare CARMA’s model estimates against re-

ported values. 

Note that analysis of the individual fitted models themselves (e.g. analysis of individual mod-

el residuals) would not provide useful information about CARMA's overall predictive skill. 

The only practically useful assessment of skill is to compare the annual, plant-level predictions 

produced by the suite of models to real-world observed values for the same plants. In addi-

tion, the models are, in practice, only used to make out-of-sample predictions (i.e. estimate 

performance of non-disclosing power plants outside the U.S.). Consequently, the most relevant 

conclusions regarding overall, applied skill are provided by assessment of predictions made 

for power plants outside the U.S. 

An initial, rough assessment of model performance is provided in Figures 2 through 7. The 

graphs illustrate the relationship between estimated and reported values for the full matched 

set of plants both inside and outside the U.S. For total CO2 emissions (Fig. 2 and 3) and 

electricity generation (Fig. 5 and 6), both linear and log scale plots are given in order to ex-

amine the relationship for both small and large plants. Fig. 4 plots estimated and actual CO2 

intensity and distinguishes plants on the basis of the primary fuel source. Fig. 7 reports the 

R2 value for each plot and plant type (emitting versus non-emitting). 

The plots suggest that CARMA’s model estimates are, indeed, capturing broad differences 

among plants of various types and sizes. The R2 values in Fig. 7 suggest that, in a relative sense, 

agreement between estimates and reported values across the full set of plants is generally 

good. Similar plots and summary statistics are were provided in Wheeler and Ummel (2008) 

when assessment the performance of the original CARMA methodology and models. 

However, as noted above, it is more relevant to focus on performance outside of the U.S., as 

this is the population of power plants for which CARMA's model predictions will actually be 

needed. Further, summary statistics like the coefficient of determination (R2) are misleading 

when calculated for variables with such a wide range of values. The R2 statistic is dominated 

by a relatively small number of large facilities, capturing little information about model per-

formance across the full set plants. The practical value of interest to CARMA users – and 

one that treats plants of all sizes equally – is the percentage error associated with estimates 

for individual plants. 
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Figures 2 through 7: Comparison of estimates and reported values for matched sam-

ple (2009 data; n =  3,500) 

   Fig. 2     Fig. 3   Fig. 4 

   

 Fig. 5    Fig. 6    

   

Fig. 7 

 

  

R
2 All 

plants 
Emitting 
plants 

Non-
emitting 

CO2 emissions 0.91 0.91 ~1.0 

Electricity 
generation 

0.90 0.88 0.92 

CO2 intensity 0.90 0.66 ~1.0 
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Figures 8 through 10 report the absolute percentage error (APE) associated with modeling 

estimates for emitting power plants outside the U.S. (n = 630 for Fig. 8 and 10; n = 832 for Fig. 9). 

Each figure reports three cumulative distributions for the APE. For example, Fig. 10 reveals 

that ~60% of emitting plants in the sample have an estimated CO2 intensity that is within 

20% of the true value. 

Figures 8 through 10: Modeling error associated with plants outside the U.S. (2009 

data) 

 Fig. 8    Fig. 9   Fig. 10 

   

Figures 8 and 9 illustrate the difficulty in generating precise estimates for electricity genera-

tion and, for emitting units, CO2 emissions. They also show that the quality of the estimates 

tends to improve for larger plants (blue lines). The cumulative amount of CO2 or electricity 

generation associated with a given APE level is shown with the red lines. For example, Fig 9. 

reveals that ~90% of electricity generation in the sample comes from plants with an APE of 

less than 40%. Figure 10 confirms that modeling of CO2 intensity results in considerably 

lower errors. About 60% of emitting plants in the sample have an APE for CO2 intensity 

less than 20% and very few emitting plants exhibit an APE above 40%. 

Plots of the cumulative error distribution are used to convey the range of APE values across 

different samples. Calculating mean APE is not particularly useful in this case, because the 

value is dominated by a few, extremely large errors (for example, the maximum APE for 

generation in the sample is 3,761%). Errors of extreme magnitude are likely the result of 

mis-matching of plants between WEPP and the public disclosure database or, alternatively, 

cases where a plant is effectively taken offline for most of the year (an unobservable event) 

but still treated as fully operational by the models. Perhaps the only defensible summary sta-

tistic is the median APE, which, for this sample of emitting power plants outside the U.S., is 

25.5% for electricity generation, 17.3% for CO2 intensity, and 30.1% for total CO2 emis-

sions. A more substantive measure of overall model skill is presented in Section 5. 

Taking the results of Fig. 8 through 10 and extrapolating to the full set of power plants in 

CARMA, it is possible to make general statements about the likely error across the entire 

database. These statements take into account the fact that the CO2 intensity and CO2 emis-
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sions of many power plants can be deduced with certainty from the primary fuel source (i.e. 

APE for CO2 emissions from hydroelectric dams is effectively zero). 

Electricity generation: Across all plants in the CARMA database, it is estimated that more 

than 45% of facilities report annual electricity generation with absolute percentage error  

20% and more than 65% of plants are below 40% APE. About 80% of global electricity 

generation comes from plants with APE  20% and more than 90% comes from plants with 

APE  40%. 

CO2 emissions: Across all plants in the CARMA database, it is estimated that at least 75% 

of facilities report annual CO2 emissions with absolute percentage error  20% and more 

than 85% of plants are below 40% APE. Nearly 70% of global CO2 emissions comes from 

plants with APE  20% and more than 85% come from plants with APE  40%. 

CO2 intensity: Across all plants in the CARMA database, it is estimated that nearly 85% of 

facilities report average CO2 intensity with absolute percentage error  20% and more than 

95% of plants are below 40% APE. Nearly 80% of global generating capacity comes from 

plants with APE  20% and nearly 100% comes from plants with APE  40%. 

5. Effects of year-to-year variability on model skill 

The preceding section made clear that estimating electricity generation (i.e. capacity factor) 

for a given plant in a given year is particularly problematic. Wheeler and Ummel (2008) show 

that a given plant’s capacity factor exhibits considerable year-to-year variation. The same 

trend is evident in more recent data. It is possible to examine the change in annual capacity 

factor between 2009 and 2010 for a set of ~5,000 U.S. power plants. The chosen facilities 

exhibit no change in generating capacity or engineering characteristics, yet significant chang-

es in the rate of utilization are not uncommon. 

Figure 11 gives the distribution of percentage change in annual generation for identical U.S. 

plants between 2009 and 2010. Note that nearly half of the plants exhibit a change of at least 

20% and about 30% see a change of more than 40%. This variability suggests that estimating 

generation for a specific plant and year faces unavoidable difficulties. Specifically, it implies 

that even a “pseudo-optimal” model that is able to use last year's observed, plant-specific 

capacity factor to predict this year's capacity factor cannot be expected to exhibit an APE 

distribution significantly better than in Figure 11. For practical purposes, Figure 11 gives 

something like the “best case” error distribution when predicting plant- and year-specific 

electricity generation. 

Figure 12 shows how different types of power plants exhibit quite different degrees of year-

to-year variability in generation. Nuclear power plants tend to be large and highly-utilized, 

with limited inter-annual variability. Gas and oil-fired plants show much higher variability. 

These results are specific to the U.S., largely reflecting the relative operating prices and prior-
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itization of fuels in the U.S. power sector. For example, gas is often (and oil almost exclu-

sively) used in “peaking” operations that are inherently volatile. 

To the extent that the U.S. experience is relevant to other countries, one can expect the ac-

curacy of CARMA's generation models to mimic the trends found in Figures 11 and 12. 

Specifically, larger facilities are more stable and, therefore, more easily and reliably modeled 

that smaller facilities. In addition, nuclear and coal power plants – in part owing to their pre-

dominant use as base-load providers – should enjoy greater model accuracy (though this is a 

moot point in the case of nuclear plants, since they are all effectively disclosed through the 

IAEA). Conversely, smaller and/or gas- or oil-based units are likely to see higher prediction 

errors. Hydroelectricity exhibits a moderate amount of inter-annual variability in the U.S. for 

2009 and 2010, but it should be noted that the operation of a given dam in any given year is 

highly dependent on local weather conditions that are not observed by CARMA's models. 

In comparison to Figure 11, CARMA's prediction errors for plants outside the U.S. (Figure 

9) are not unreasonable. A “pseudo-optimal” model would likely predict annual generation 

with APE<20% for about 55% of plants. Figure 9 suggests that CARMA's models currently 

achieve this level of accuracy for slightly more than 40% of plants. And whereas an ideal 

model might be expected to achieve APE<40% for about 70% of plants, CARMA does so 

in more than 60% of cases. 

Figures 11 and 12: Variability in year-to-year electricity generation for identical U.S. 

Plants 

Fig. 11       Fig. 12 

  

We can also imagine a “naïve” model that assumes each plant's capacity factor is simply 

equal to the average capacity for the fuel type in question. Figure 13 shows how CARMA 

model estimates compare to the hypothetical “naïve” and “pseudo-optimal” models . The 

comparison is not exact, because the “pseudo-optimal” and “naïve” APE distributions come 
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from a large sample of U.S. power plants, while CARMA's error distribution is the same as 

that in Figure 9 (i.e. APE for a set of emitting power plants outside the U.S.). Still, the results 

are informative and provide probably the single best assessment of practical model skill. Fig-

ure 13 suggests that the CARMA v3.0 models eliminate about two-thirds of the reducible 

error, compared to a “naïve” model. 

 
Figures 13: CARMA v3.0 electricity generation error distribution compared to alter-

native models 

 

While precise, plant- and year-specific estimates are obviously preferable, they are likely im-

possible given inherent variability in rates of plant utilization. The factors driving the signifi-

cant year-to-year variation are too site-specific to be sufficiently observed and modeled. 

Larger facilities do tend to operate by more regular and predictable rules, and this is con-

firmed by a general reduction in estimation error for larger plants. However, only increased 

disclosure of plant-specific data can really help overcome the low signal-to-noise ratio that 

hampers modeling efforts. Encouragingly, CARMA's models do appear to provide a signifi-

cant improvement over more simplistic approaches to estimating plant-specific electricity 

generation. 
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6. Aggregation effects 

In addition to plant-specific figures, the CARMA database publishes aggregate totals for a 

wide variety of geographic regions and power companies. The electricity generation and CO2 

emissions totals for these entities are summed from the individual plant data. It is important 

to note that the typical prediction errors associated with aggregated plant data are significant-

ly lower than for individual plants. This is due to the fact that prediction errors will tend to 

offset each other and “zero out” as plant-specific data are added together. 

To confirm this, total electricity generation, CO2 emissions, and CO2 intensity were calculat-

ed for each U.S. state using 1) disclosed plant data and 2) estimated plant data for 2009. The 

APE between the actual and estimated state totals were considerably smaller than those ob-

served for individual plants. Specifically, the median APE across states was 9.4% for electric-

ity generation, 8.5% for CO2 intensity, and 17.1% for total CO2 emissions. These median 

APE values are ~ 45-65% lower than those reported for individual plants in Section 4. 

This is not surprising, given that the prediction errors show no evidence of systematic bias. 

Figure 14 provides a “Normal Q-Q” plot for assessing the distribution of capacity factor 

prediction errors for emitting plants outside the U.S. (same observations as used in Figures 9 

and 13). The plot suggests the errors are approximately normally distributed. The median 

error is just 1.2%, confirming the absence of bias. 

Figure 14: Normal Q-Q plot of capacity factor prediction errors 

 

Although not readily testable at present, it is very likely that prediction errors are offset over 

time for a specific facility. In other words, it's likely CARMA's estimates can be fairly inter-

preted as reasonable long-term, average performance metrics. While estimates for any particu-

lar year may exhibit significant error, the long-term performance of most plants is likely con-
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sistent with the model predictions. This is especially true of larger plants. Measures of typi-

cal, long-term performance for larger facilities (existing and planned) are, perhaps, the most 

relevant information for many real-world uses of CARMA. 

7. Geocoding of global power plants 

In addition to plant performance, CARMA provides information regarding the location of 

individual power plants. CARMA v3.0 offers a number of significant advances in this area. 

The WEPP database includes variables for country, state/province, and city, though the 

coverage is inconsistent. An algorithm was developed to use the open-source GeoNames 

place names database and API to help standardize, fill-out, and expand the geographic data 

provided by WEPP (for example, entity spellings vary widely in the raw WEPP data).7 This 

process also resulted in city-center latitude and longitude for about 70% of power plants 

worldwide. Over 6,000 additional high-resolution plant coordinates were obtained from dis-

closure databases in the U.S., Europe, and Canada and manual geocoding. 

For users interested in using CARMA’s data in geospatial applications, use of the approxi-

mate (city-center) coordinates may be necessary. For the set of ~6,200 plants for which the 

city-center and precise coordinates were obtained, it is possible to calculate the typical dis-

tance error. The results show that for about 50% of the sample, the approximate coordinates 

are within 5 km of the actual location and 70% are within 10 km. Among the closest 90% of 

pairs, the average distance is 7 km. 

8. Conclusion 

The CARMA database attempts to provide comprehensive information about the state of 

power plants worldwide, using a combination of public and private data and model esti-

mates. Recent advances have expanded the amount of public data incorporated in CARMA, 

improved model estimates, and quantified the likely error. It is hoped that CARMA’s con-

tinued presence will act as an impetus for further disclosure of plant-level CO2 emissions, 

whether by governments or corporations. CARMA’s policy is to integrate data from compa-

nies that provide verified, plant-specific emissions reports for the entirety of their generating 

fleet. 

Importantly, CARMA v3.0 also lays the technical groundwork for an expansion to non-CO2 

compounds (both GHG’s and conventional pollutants). CARMA’s initial development was 

inspired by the threat of global climate change and need to reduce power plant CO2 emis-

sions, but many other pollutants of interest are often correlated with CO2. Some of these 

compounds have discernible local impacts (e.g. acid rain, urban air pollution, etc.). Com-

bined with CARMA’s extensive geographic data, an expansion to other pollutants would 

enable education, research, and activism at local scales for a wider range of environmental 

                                                      

7Linkage of CARMA’s R processing scripts and the GeoNames API was provided by the geonames package 

(Rowlingson 2011). 
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and human health threats. This would complement CARMA’s existing focus on CO2 emis-

sions, providing educators, policymakers, researchers, investors and activists with an even 

richer suite of detailed information about the environmental footprint of power plants 

worldwide. 
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