# Estimating Income/Expenditure Differences across Populations: New Fun with Old Engel's Law

# Lant Pritchett and Marla Spivack

# Abstract

How much larger are the consumption possibilities of an urban US household with per capita expenditures of 1,000 US dollars per month than a rural Indonesian household with per capita expenditures of 1,000,000 Indonesian Rupiah per month? Consumers in different markets face widely different consumption possibilities and prices and hence the conversion of incomes or expenditures to truly comparable units of purchasing power is extremely difficult. We propose a simple supplement to existing purchasing power adjusted currency conversions.

The Pritchett-Spivack Ratio (PSR) estimates the differences in household per capita expenditure using a simple inversion of the Engel's law relationship between the share of food in consumption and total income/ expenditures. Intuitively, we ask: "How much higher (as a ratio) would the expenditures of a household at 1,000,000 Indonesian Rupiah need to be along a given Engel relationship before they were predicted to have the same food share as a US household with consumption of 1,000 US dollars?" The striking empirical stability of Working-Lesser Engel coefficient estimates across time and space and widely available estimates of consumptions expenditures and hence food shares allow us to make two robust points using the PSR.

First, the consumption of the typical (median) household in a developing country would have to rise 5 to 10 fold to reach that of a household at the poverty line in an OECD country. Second, even the "rich of the poor"—the 90th or 95th percentile in developing countries—have food shares substantially higher than the "poor of the rich."

# JEL Codes: O10, I32, D12, D31

Keywords: Engel curve, material standard of living, international development, poverty assessment income inequality.

Center ق Global Development www.cgdev.org

# Working Paper 339 August 2013

## Estimating Income/Expenditure Differences across Populations: New Fun with Old Engel's Law

Lant Pritchett Harvard Kennedy School Senior Fellow, Center for Global Development

> Marla Spivack Center for Global Development

We are grateful to Charles Kenny and two anonymous reviewers for useful comments. All errors and opinions are our own.

CGD is grateful for support of this work from its board of directors and funders, including the William and Flora Hewlett Foundation, the Norwegian Ministry of Foreign Affairs, the UK Department for International Development, and the Swedish Ministry of Foreign Affairs.

Lant Pritchett and Marla Spivack . 2013. "Estimating Income/Expenditure Differences across Populations: New Fun with Old Engel's Law." CGD Working Paper 339. Washington, DC: Center for Global Development. http://www.cgdev.org/publication/estimating-incomeexpenditure-differences-acrosspopulations-new-fun-old-engel's-law

Center for Global Development 1800 Massachusetts Ave., NW Washington, DC 20036

> 202.416.4000 (f) 202.416.4050

www.cgdev.org

The Center for Global Development is an independent, nonprofit policy research organization dedicated to reducing global poverty and inequality and to making globalization work for the poor. Use and dissemination of this Working Paper is encouraged; however, reproduced copies may not be used for commercial purposes. Further usage is permitted under the terms of the Creative Commons License.

**v.org** The views expressed in CGD Working Papers are those of the authors and should not be attributed to the board of directors or funders of the Center for Global Development.

## Contents

| 1.  | Introduction                                             | . 1        |
|-----|----------------------------------------------------------|------------|
| 2.  | The Pritchett-Spivack Ratio                              | . 4        |
| 2   | 2.1 Why a new comparison of material standard of living? | . 4        |
| 2   | 2.2 The calculation                                      | . 5        |
| 2   | 2.3 Benefits of the PSR                                  | . 8        |
| 3.  | Estimating the simple Engel coefficient                  | . 8        |
| 4.  | "Ground-truthing" the PSR with historical episodes1      | 1          |
| 5.  | Applications1                                            | 13         |
|     | 5.1 How much growth is needed?1                          | 13         |
|     | 5.2 Are the "rich" in poor countries rich?               | 21         |
| 6.  | Conclusion                                               | 26         |
| Ref | ferences                                                 | 27         |
| Ap  | pendix2                                                  | <u>2</u> 9 |

#### 1. Introduction

Many discussions about post-2015 development goals are dominated by concerns about (a) "sustainability"<sup>1</sup> (b) the plight of the "poor of the poor" (if not the "poorest of the poor") based on the penurious "dollar a day" standard or its ilk, (c) the minimalist standards on well-being indicators (Kenny and Pritchett 2013) embodied in the current Millennium Development Goals and (d) "inequality" in outcomes across groups *within* countries. The "post-materialist" concerns which empirically predominate in the richest countries (Inglehart 1997)) are very much in evidence. One might even get the impression that, while material standard of living standard of the "bottom billion" was a global concern, everyone else was doing fine<sup>2</sup>. In fact, given the frequency with which the words "consumption" and "sustainable" are paired one might think the most pressing concern with the current consumption "middle of the middle"—the median household in the world--was that it was *too high* or growing *too quickly*.

This lack of urgency for improving the material standard of living of the five billion people in the middle (neither in dollar a day poverty nor in the top billion) is not because the incomes in poor countries have "converged." Comparing GDP per capita in 2010 of the USA to the ten largest non-OECD developing countries<sup>3</sup> shows ratios from 50 times to 1 in Ethiopia to around 10 to 1 in "low middle income" countries like India and Indonesia to 5 to 1 in "upper middle income" countries like China and Brazil. But comparisons of GDP are increasingly out of favor. From Robert Kennedy<sup>4</sup> to the Sarkozy-Stiglitz Commission there have been criticisms of GNP as a relevant measure for human well-being. At high levels of material well-being it is natural that post-material concerns like "the beauty of our poetry" (part of RFK's critique of GNP) become important. This is sharpened, of course, by the inadequate accounting for natural resources and their depletion in the measured GNP. Moreover, per capita GDP (or consumption) says nothing about the distribution of consumption possibilities among the individuals within the economy.

<sup>&</sup>lt;sup>1</sup> The General Secretary of the UN has explicitly stated that the "development" and "sustainability" objectives should be merged in the post-2015 framework.

<sup>&</sup>lt;sup>2</sup> Of course Paul Collier's "bottom billion" (2007) put attention on Africa and "fragile" and conflict states by ignoring the equally poor half billion of South Asia (Ghani 2010) and the poor of other regions on the premise that, although equally poor, these people resided in countries that were, on average, growing.

<sup>&</sup>lt;sup>3</sup> Mexico's joining of the OECD makes the usual shorthand of "developed" and "OECD" problematic. Here we exclude Mexico, and when we want to refer to the developed countries, we use the phrase "rich OECD" which excludes the more recent joiners.

<sup>&</sup>lt;sup>4</sup> He famously said of GDP that "it measures everything in short, except that which makes life worthwhile."

However, even eschewing GNP and examining global inequalities using household survey based incomes or expenditures across countries (e.g. Milanovic 2013b) leaves the challenge of comparisons of the purchasing power households. Two households in Cleveland, one making \$50,000 a year and one making \$20,000 a year can buy in the same grocery stores, rent from the same housing stock, could get haircuts from the same salons and get electricity from the same utility. Since they the same possibilities and prices money incomes proxy well for consumption possibilities. But how does one compare "true" purchasing power between a household spending \$20,000 in Cleveland versus 1,000,000 Rupiah in Semerang Indonesia versus 50,000 Rupees in Chennai India? While the International Comparisons Project and its successors and partners have made enormous strides in the quality of estimates of PPP currency conversions, the sheer conceptual and empirical complexity of the exercise especially quality adjusted price comparisons of non-traded goods and services--can leave both the "man on the street" and the expert skeptical<sup>5</sup>.

In this paper we present a new measure, the Pritchett-Spivack Ratio, for comparing consumption possibilities across countries (or groups within countries) using average food shares. Our measure is free of all three of the previous objections. First, we use no national accounts data at all. None of the criticisms of GDP apply. Second, our measure is always based on specifics of the distribution of consumption across households. Third, we require no international measures of prices. Nothing of course is a free lunch. Our measure buys simplicity and intuitive appeal at the cost of dependence on the stability of Engel's Law.

The Pritchett-Spivack Ratio is the ratio of the expenditures it would take for the observed food share of any one group (say, the median urban household in Indonesia or the 95<sup>th</sup> percentile household in rural Ethiopia) to reach, by moving along an Engel relationship between food share and total consumption, the food share of another group (say, the bottom 20<sup>th</sup> percentile in the USA or the median in Denmark). The PSR simply uses the Engel curve to translate differences in food shares (vertical axis) into differences in expenditures (horizontal axis). With the Working-Leser (Working, 1943; Leser, 1963) specification of the Engel relationship, which relates the food share of expenditure linearly to the natural log of total household expenditures, the PSR takes a very simple and intuitive formula which depends on the Working-Leser Engel Coefficient.

<sup>&</sup>lt;sup>5</sup> For instance, Deaton, Friedman, and Alatas (2004) use household data on prices to estimate PPP conversions for India versus Indonesia and find very different results than the standard comparisons.





Source: Penn World Tables 7.0

We use our newly described measure to show two things.

First, the food share of the typical (median) household in the typical "low income" country is over 50 percent, is between 40 and 50 percent in "lower middle income" countries and 30 to 40 percent even in "upper middle income" countries. In contrast, the share of food expenditures in the total for poor households in rich countries is only 15 percent (and of course, lower still for the median household in rich countries).

The arithmetic of the PSR is intentionally simple so that anyone can understand and re-do the calculation any way they like. If the food share of the median household in a middle income country is 40 percent and that of the "poor of the rich" is 15 percent then the food share gap is 25 percent. Multiplying that number by the inverse of the WLEC, which as we show is commonly around -.125, equals the number of natural log units expenditure would have to increase to reach that food share so: -.25\*8=2. The Pritchett-Spivack Ratio, which is the multiple of the expenditure households with a 40 percent food share would have to increase to reach a predicted food share of 15 percent is the base of the natural log (e) raised to that power and hence in this case is 7.4 ( $e^2 \approx 7.4$ ). Increasing consumption to this level would take 50 years of sustained growth at double historical rates.

Second, using the PSR we can also compare the "rich of the poor" to the "poor of the rich." We find that in nearly every "lower middle income" country the food share of the top decile

is roughly twice as high (around 25 to 30 percent) as the food share of the poor in rich OECD. This implies that the even the "rich of the middle income" would have to have expenditures at least *twice as high* (e.g.  $\exp((.25-.15) / .125)=2.2)$  to reach the same food share as *the poor* in rich countries. Even in upper middle income countries like Peru the food share of "the rich" barely reaches that of the OECD poor.

These calculations are not an alternative to existing comparisons of either national accounts consumption data or household income/expenditure using PPP exchange rates, but rather a supplement. They confirm the findings of previous studies which have compared welfare across groups using PPP expenditure and income estimates (Birdsall 2010). Our calculations add some simple "common sense" credibility based only on easily available data about actual consumption choices of households to the much, much, more complex and sophisticated calculations of GDP and of PPP exchange rates. Both come to the conclusion that the core global agenda for development, if it is to be all relevant to most people on the planet, has to continue to focus squarely on expanding the productivity of people around the world to endow them with choices that are both adequate to human well-being and globally fair.

### 2. The Pritchett-Spivack Ratio

#### 2.1 Why a new comparison of material standard of living?

There are two dominant ways of comparing material standards of living across countries: national accounts and survey estimates. The national accounts estimates of GDP per capita or consumption per capita suffer from (at least) four difficulties. First, there is the intrinsic difficulty of making comparable estimates of national accounts across countries. Second, the "consumption" component of GDP is often the least well measured (and in fact is often measured as a residual). Third, the national accounts estimates produce a single number of aggregate consumption and provide no information about the distribution of consumption across households. Fourth, national accounts are produced in local currency and hence an exchange rate is needed.

Comparisons using measures of income or expenditure directly from household surveys solve three of these four difficulties, while adding a new concern. The new concern is whether the concept of "expenditure" is measured similarly across countries. Household survey estimates of income or consumption are also in local currency and hence crossnational comparisons require a conversion factor from one currency to another.

The well-known problem is that non-tradable goods and services (like getting a haircut) are cheaper in poor countries and hence using market determined exchange rates – even if these exchanges rates were to establish PPP in tradable goods – will *overstate* the differences in purchasing power between a rich and poor country, because they do not account for cheaper non-tradables. The International Comparisons Project (ICP) and its successors have made heroic efforts since the 1970s to collect and process the data needed to create Purchasing Power equivalent exchange rates, the exchange rate such that a rupee converted into a

common currency, say dollars, at that exchange rate represents equal command over resources in India as in the USA. These PPP exchange rates are now routinely used by all international comparisons of either national accounts (as for instance in the Penn World Tables or the World Bank's estimates) and are used for comparisons of household surveys (e.g. Milanovich 2013b).

Almas (2007) used household micro-data to calculate Engel curves across nine different countries and, relying on the observed stability of the Engel curves, imposes a common Engel relationship across the countries to estimate the bias in the Penn World Tables PPP calculations. He finds that PPP exchanges rates overestimate income of poor countries, with the a greater bias the poorer the country. Hence international inequality in living standards is systemically underestimated by the conventional estimates of GDP or consumption per capita.

We build on this previous work, exploiting micro and grouped data to estimate Engel elasticities for many more countries. However our method relies only on the stability of the Engel curve *within* countries and we never explicitly calculate income differences or prices across countries. We are proposing an additional alternative *to* estimating PPP rather than an alternative estimate *of* PPP or a *substitute* for PPP. Our comparisons and PPP have different strengths and weaknesses and, while we will compare our estimates to PPP there is no default assumption that PPP comparisons are the "gold standard" which we are trying to achieve nor, conversely, do we attempt to make generalizations about the validity of PPP.

#### 2.2 The calculation

Since proposed by Ernst Engel in 1857 the conjecture that more prosperous households spend a lower fraction of their expenditures (or income) on food (or, alternatively, that the income/consumption elasticity of food expenditure is less than one) has become the most widely replicated empirical relationship in all of the social sciences. Moreover, an extremely simple specification of Engel's Law—that the household share of expenditures on food is linearly related to the natural log of total consumption expenditures (or income) known as the Working-Leser form—has been shown to be robust and reliable functional form. Whether data across households within a country/region, across income or consumption groups within a country/region, across time in a country/region, or across countries/regions is used the estimated WLEC is consistently centered between -.1 and -.15.

Our new fun with the old Engel Law is to simply "invert" it. Usually one thinks of the Engel curve as "predicting" the food share for a given level of expenditures but we use the same linear relationship to "estimate" the difference in expenditures implied by differences in food shares. As simplicity and straightforward intuition are two desirable features we want to stress how stubbornly simple our calculation is (while acknowledging the sacrifices for this simplicity) using Figure 2. In a standard Engel graph with food share on the vertical axis and natural log ependitures on the horizontal the difference in food shares between the actual of some group (e.g. the median in Rural India or 95<sup>th</sup> percent of Peru) and a "target"

food share is just the vertical "rise." We want to know the "run"—the difference in (ln) expenditures that along a given Engel relationship would produce a "predicted" at that level of expenditures equal to the target. In the linear case this not calculus, or even algebra, it is just simple arithmetic: the "run" is just equal to the "rise" (difference in food shares) times the "run over the rise" which is just the inverse of the linear slope. This gives the difference in natural log units. Then by the properties of natural logs (that the difference in natural logs is the log of the ratio) the ratio of the levels of expenditures is just *e* ( $\approx$ 2.714, the base of the natural log) raised to that power.



Figure 2. Graphic illustration of the calculation of the Pritchett-Spivack ratio

The PSR formulation is general and can be calculated using any functional form of the Engel relationship, but in the PSR-WL specification it takes the very simple form (assuming in this case target is lower than actual so the numerator and denominator are both negative):

1) 
$$PSR - WL(\alpha^{Actual}, \varepsilon, \alpha^{Target}) = \frac{C^{Target}}{C^{Actual}} = \exp\left(\frac{\alpha^{Target} - \alpha^{Actual}}{\varepsilon}\right)$$

Whether expenditures are measured in rupiah, rupee, lira, or pesos doesn't matter as the PSR never transforms the units of expenditure. The counter-factual is "as a household expanded its consumption along a simple linear Engel relationship how much higher would consumption have to be *in those units and at the same consumption possibilities* before the predicted household food share reached the target?"

Figure 3 shows the calculation of the PSR between the average consumption in the USA and urban Indonesia using a range of Engel coefficients. The average food share was 44.4% in urban Indonesia and 12.8% in the US in 2010. The simple Engel coefficient estimated from grouped expenditure class data in urban Indonesia is -.125 and a two standard error confidence interval runs from -.10 to -.15. Since this coefficient is in the denominator and is small and the log difference is exponentiated the calculations are non-linear and sensitive to the Engel coefficient. If we take the actual estimate, -.125 the PSR=12.6. Obviously at a lower (in absolute value) WLEC the PSR is higher and at a larger (in absolute value) WLEC the PSR at -.10 is 8.24 and the PSR at -.15 is 23.7.

As figure 3 illustrates, we never assert that expenditures are commensurate (as would be necessary in order to show both Engel curves on the same x-axis). Instead of attempting to say "this many Rupiah equals this many dollars" the PSR allows us to say "at nominal expenditures X times higher than their current level consumers would, if they moved along a fixed Engel relationship at given prices and possibilities, reach the target food share." We assume all people in the comparison group (e.g. urban Indonesians) face the same relative prices as they are in the "same" market and hence the counter-factual is an expansion of nominal consumption holding prices (both absolute and relative) constant. This may, or may not, be the relevant counter-factual but at least the counter-factual is clear, as we are never forced to compare relative prices and possibilities of urban Indonesia and the US.

# Figure 3. Comparing the PSR of the average Urban Indonesian and average USA consumers at various elasticities



#### 2.3 Benefits of the PSR

The principal attractions of the PSR are four-fold. First, it makes intuitive sense to the "woman on the street"—if rich people spend less on food then we can compare who is rich and who is poor (and by how much) by comparing how much they spend on food. This does not depend on understanding or believing either national accounts or PPP comparisons. Second, the data on food shares from household surveys is widely available across countries. Since the weights in a consumer price index depend on consumption shares, nearly every country in the world has done an expenditure survey and many countries do them at frequent intervals. Third, since nearly all expenditure surveys are divided into income or expenditure classes the food share comparisons can be made at various points of the country income distribution. Fourth, the PSR is "plug and play" as we are not insisting that the PSR be used with any particular Engel coefficient—or even that one use a simple functional form of the Engel relationship. Just plug in any values of the three inputs, actual food share (of any percentile of the consumption distribution), a target food share (chosen in any way desired), and any functional form of the predicted Engel relationship and *viola* one has a PSR.

There are many, many limitations to the PSR and we are not overselling its value. First, we want to be clear we are not proposing that the food share is a well-defined measure of human well-being. However, the food share is a useful *proxy* for household consumption possibilities at an *aggregate* level. If we compare the food share at the 20<sup>th</sup> percentile of income in Colombia to the food share at the 20<sup>th</sup> percentile of income in Indonesia we have tens of thousands of households of different shapes and sizes smoothed together and aggregated, and we can reasonably compare the welfare of the aggregated 20<sup>th</sup> percentile households in Colombia and Indonesia.

The Engel curve is an empirically reliable tendency, which gives the food share a rough and ready usefulness, but the food share is not measure of human well-being that could be axiomatically derived and defended. In particular, we are not proposing the food share for comparisons across households within a population, as the differences in food needs of households of different sizes, demographic structures, etc. make the food share vary for reasons having nothing to do with ranking households' "true" income. We are proposing the PSR as a new simple calculation that, by taking advantage of the consistency of the elasticity of the Engel curve, allows us to make easy to understand and compute comparisons between groups, and draw useful conclusions about the differences in welfare between groups.

### 3. Estimating the simple Engel coefficient

The simplest form of the PSR-WL hinges on an Engel relationship in which the food share is linearly related to the natural log of expenditure and for which the slope (WLEC) can be known with some precision. Fortunately, the W-L Engel curve is one of the most widely estimated and one of the most remarkably stable empirical relationships in all of economics (indeed in all of the social sciences). This paper is not a contribution to the voluminous literature estimating Engel curves, with literally thousands of papers. We use three different types of data sources to estimate Engel curves, household micro data, grouped data that has been compiled by international organizations, and group data accessed from country statistical office reports. We show elasticity estimates in this paper simply to show that the most straightforward ways of estimating the simple Engel coefficient, all, in spite of their several defects, produce estimates that cluster in the range of -.10 to -.15.

*Estimates from household data micro data.* We use household micro data from three sources: the Comparative Living Statistics Project, the Luxembourg Income Study, and the Indonesia Family Life Survey. These sources allow us to compute the WLEC using household data for 38 countries from various years. Table 1 (summarizing results reported in Appendix Tables A1, A2 and A3) show these household based estimates cluster around -.1.

*Estimates from grouped/percentile data.* The WLEC can be estimated using grouped data on food share and consumption expenditures, such as deciles, quintiles, or consumption/income brackets. The International Labor Organization (ILO) maintains a database of estimates of consumer expenditures used in estimating consumer price indices, and we use those data to estimate the WLEC for these countries. Similarly, a 1981 FAO publication includes grouped data for 27 countries for years ranging from 1969-1979. Country statistical offices also publish this data in statistical abstracts and online databases, which we gather for key countries.

*Estimates across countries.* At the 100 year anniversary Houthakker computed Engel elasticities for 31 countries for various years between 1853 and 1955, with multiple survey years for some. He found an elasticity slightly different from Engel's 1857 finding, but consistent in direction and magnitude. Houthakker did not use the WLEC functional form, but here we use the summary statistics reported in his paper to estimate the WLEC across the countries in his study. The cross national elasticity from this historical data is -.105 Later at the 150<sup>th</sup> anniversary of Engel's publication introducing the empirical law between income and consumption, Anker (2011) constructs a data set of food shares for 207 countries and uses this to estimate the WLEC across countries. His point estimate is -.109, a number which he shows is quite robust whether one allows for non-linearity or disaggregates the countries by income level. nearly

*Estimates from over long periods.* The WLEC can also be estimated over long periods of time, with historical data on household expenditures by categories. Japan publishes harmonized data on household expenditures by income groups for almost every year between 1926 and 2007, which we use to estimate the WLEC for the 38 years between 1955 and 1992.<sup>6</sup> The WLEC estimate across this seven decade period is -.175.

<sup>&</sup>lt;sup>6</sup> We begin the analysis in 1955 because that is the first year for which CPI data are available. We end in 1992 to leave out the years during and after Japan's economic crisis.

|                                                                                                         | Number    | Median of<br>estimates of | One standard<br>deviation interval |
|---------------------------------------------------------------------------------------------------------|-----------|---------------------------|------------------------------------|
| Source of Data                                                                                          | countries | elasticity                | estimate                           |
| Household data                                                                                          |           |                           |                                    |
| CLSP (Table A.1)                                                                                        | 21        | -0.097                    | -0.047 to -0.146                   |
| Indonesia FLS (Table A.2)                                                                               | 1         | 082                       |                                    |
| LIS (Table A.3)                                                                                         | 16        | -0.114                    | -0.0727 to -0.1549                 |
| Grouped data                                                                                            |           |                           |                                    |
| ILO (countries with food share above .25, recent data, Table A.4b)                                      | 27        | 114                       | 06 to17                            |
| FAO (data from 1969-1981, Table A.5)                                                                    | 27        | 143                       | 079 to21                           |
| Country Statistical Offices (Table A.6)                                                                 | 6         | -0.140                    | 1 to179                            |
| Cross national estimates                                                                                |           |                           |                                    |
| Authors' estimate with Houthakker's (1957) data (Table A.7)                                             | 31        | 105                       |                                    |
| Anker (2011) (includes controls for<br>urbanization, transition economy,<br>island economy) (Table A.8) | 207       | 109                       |                                    |
| Estimate over a long period of time                                                                     |           |                           |                                    |
| Japan 1955-1992 estimate (Table A.9)                                                                    | 1         | -0.1747                   |                                    |

Table 1. Estimates of simple Working-Leser Engel coefficients (food share regressed on natural log of expenditure) from household, grouped, cross-national, and long-time series data are remarkably consistent.

See appendix tables for notes and sources.

Given the consistency of the WLEC, there is little reason not to use the same WLEC to make comparisons across countries and using a single elasticity ensures differences in the country ratios depend only on differences in the food share. The median of all of the elasticity estimates described in table 1 is -.114. However, as a "focal point" value we use -.125 as a "base case" because (a) since it is the inverse that matters this means one multiplies by 8 and (b) it is halfway between -.10 and -.15.

Using household data we test the Working-Leser function form by estimating an Engel curve with per capita consumption, natural log of per capita consumption, squared per capita consumption, and cubed per capita consumption. The fully flexible model rarely raises the R2 by more than .01.

|                                                    |                              |                      | R <sup>2</sup> restricted<br>model   | R <sup>2</sup> fully<br>flexible<br>model | Change in R <sup>2</sup>             | n                          |
|----------------------------------------------------|------------------------------|----------------------|--------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|
|                                                    | Guatemala<br>Estonia         | 2006<br>2000         | 0.5601<br>0.2671                     | 0.5672<br>0.2734                          | 0.0071<br>0.0063                     | 13,664<br>5,601            |
| LIS<br>(Table A.10)                                | Mexico<br>Peru<br>Poland     | 2004<br>2004<br>2004 | 0.4142<br>0.3543<br>0.4439           | 0.4219<br>0.3596<br>0.4483                | 0.0077<br>0.0053<br>0.0044           | 22,595<br>18,432<br>32,214 |
|                                                    | Slovenia<br>South Africa     | 2004<br>2008         | 0.0993<br>0.3649                     | 0.1104<br>0.3701                          | 0.0111<br>0.0052                     | 3,725<br>7,291             |
| Indonesia<br>Family Life<br>Survey<br>(Table A.11) | 2007<br>2000<br>1997<br>1993 |                      | 0.1343<br>0.1393<br>0.1782<br>0.1184 | 0.1378<br>0.1574<br>0.1896<br>0.1321      | 0.0035<br>0.0181<br>0.0114<br>0.0137 | 12,658                     |

# Table 2. Difference in R<sup>2</sup> Between Restricted and Fully Flexible Model for the Engel curve

See appendix tables for notes and sources.

# 4. "Ground-truthing" the PSR with historical episodes

Since our thought experiment of how the food share would evolve with growth in expenditures is essentially dynamic while our calculations are essentially static (using a crosssection to predict along a given Engel curve), it will be reassuring to "ground-truth" that in observed episodes of increases in expenditures the fall in food share was roughly as predicted. We do this for two countries with large measured changes in real expenditures and with historical data on food shares, Japan and Indonesia.

*Japan 1955-1992.* Japan makes a nice test case as it had (a) rapid growth and (b) good historical data. We estimate an Engel curve using quintile data for each year of the data. The estimated Engel curve using the time series from 1955 to 1992 gives an elasticity of -.162 (with a standard error of .003). This almost exactly that of the average of the cross-sectional (quintile) estimates over time of .163.

The estimated PSR needed to reduce the food share from its actual 1955 level of 38.3 percent to its 1992 level of 15.7 percent based on the average of the estimated Engel elasticities from each year of -.163 is 3.78. The actual computed increase in real expenditures per household (using the CPI for deflation) was 3.72.

However, the close fit of the "predicted" PSR and the actual changes in real consumption expenditures comes from using the *average* Engel elasticity over time, which fell secularly as the food share fell from -.254 to -.103 for an overall average of -.163. The 1955 elasticity

would have understated the increase needed (PSR(.383, -.254, .157)=2.35) as it was the highest elasticity in all of our estimates. This very large elasticity was something of an anomaly as the WLEC in 1926 was -.179 and by 1963 the elasticity was at -.169 (Table A.12) both large, but within the usual range. Conversely, the 1992 elasticity would have overstated the increase needed (PSR(.383, -.103, .157)=8.25).

| Table 3. The PSR of Japan 1955-1992: comparing actual fall in food share, actual rise | 2 |
|---------------------------------------------------------------------------------------|---|
| in real total expenditures and rise in expenditures "predicted" by the PSR            |   |

| Year                              | Food Share<br>(excluding<br>eating out) | Estimated<br>Engel<br>Elasticity<br>(quintiles) | Pritchett-Spivack Ratio                       | Real Household<br>Expenditure per<br>Person |
|-----------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------|
| 1955<br>1992                      | .383                                    | 254<br>103                                      | PSR(.383,163, .157)<br>(.383157)              | 1<br>3.72                                   |
| Average of<br>annual<br>estimates |                                         | 163                                             | $= \exp\left(\frac{163}{163}\right)$ $= 3.78$ |                                             |

See appendix table A.12 for notes and sources.

*Indonesia 1978-2011.* Indonesia also experienced rapid growth in GDP per capita and has reasonable household survey based estimates of consumption over a long span.

The share of food in consumption expenditures of the average household fell from 63.1 percent in 1978 to 49.4 percent in 2011. The estimates of the Engel elasticity for 1978 and 2011 based on grouped data are equivalent to three digits at -.122. The PSR suggests that to achieve this fall in food share would require a three-fold (3.06) increase in consumption. In this case the data suggest that household expenditures deflated by the CPI in fact increased by a factor of four.

This difference illustrates the sensitivity of *both* calculations of "real" expenditures and of the PSR. Monthly nominal expenditures per person increased from 5,568 Rupiah to 593,664 Rupiah. Much of this increase in nominal expenditures was due to inflation, but how much? The measured CPI increased from 100 in 1978 to 2,634 in 2011, an annualized average rate of 9.9 percent. Suppose that measured inflation understated the "true" inflation and "true" inflation was really 10.3 percent – .4 percentage points per year higher. Then "real" income grew by exactly the PSR predicted amount based on food share changes of 3.06. The point is that the CPI, while the standard, is not necessarily the gold standard, as its measurement is problematic in known ways. Of course, the PSR is also sensitive to the estimated Engel parameter and if that was -.097 instead of -.122 then the PSR would be 4.06, the exact ratio measured ratio of change in "real" consumption. Whether 3.06 is "close" to 4.05 is in the eye of the beholder.

|      |             |            |                                           | Real         |
|------|-------------|------------|-------------------------------------------|--------------|
|      |             |            |                                           | Household    |
|      |             |            |                                           | Expenditure  |
|      | Food Share  | Estimated  |                                           | per Person,  |
|      | (excluding  | Engel      |                                           | CPI deflated |
| Year | eating out) | Elasticity | Pritchett-Spivack Ratio                   | (1978 = 1)   |
| 1978 | .631        | 122        | <i>PSR</i> (.631,122, .494)               | 1            |
| 2011 | .494        | 122        | $=\exp\left(\frac{(.631494)}{122}\right)$ | 1            |
|      |             |            | = 3.06                                    | 4.05         |

Table 4. The PSR of Indonesia 1978-2011: comparing actual fall in the food share, actual rise in real total expenditures and rise in expenditures "predicted" by the PSR

Source: authors calculations from Indonesia SUSENAS reports.

### 5. Applications

#### 5.1 How much growth is needed?

The question this section seeks to answer is: "How much would the expenditures of the *typical* (median) household in various countries need to increase to reach the food share of the *poor* households in the OECD?" In a discussion of global development it can hardly be contemplated that the typical person in every country is not at the very least to expect to attain a similar array of choices of at least those enjoyed by the poor in the OECD today. Perhaps the level of consumption of the rich in the OECD is neither achievable nor, in some deep and higher sense, desirable. But it is hard to see how a "development" agenda could not include a future which provides the typical person with at least the same chances and choices that the poor in rich countries now enjoy.

In this section we do three things. First, we calculate the typical food share of households that are considered "poor" in the OECD. Second, we use data from a variety of countries to calculate the Pritchett-Spivack ratio of the median household in the i<sup>th</sup> country to the food share of the OECD poor at various Engel elasticities<sup>7</sup>:

<sup>7</sup> We might be concerned about the comparability of household food consumption data in developing countries, and household food consumption data in rich countries. In poor rural areas, households tend to grow a large portion of their own food. For households like these, surveyors must ask respondents to impute the value of food produced at home for personal consumption, a difficult calculation that may be imputed inaccurately or inconsistently across households and countries. Since households that produce their own food make up a much greater share of the population in developing countries, this inaccurate imputation may introduce some bias. However, when we compare the median food shares in urban and rural areas (see appendix table 14) we find that they are similar, which suggests that this type of systemic bias need not be a major concern.

# $PSR - WL(\alpha^{i}_{Median}, \varepsilon, \alpha^{OECD}_{Poverty})$

Third, we then calculate how many years of rapid (e.g. 4 percent per annum) growth would be needed for the typical household to reach the food share of the OECD poor.

*Food share of the rich OECD country poor.* In Table 6 we calculate the food share of "the poor" in rich OECD countries in three different ways. First we use food share data by quintile the food share to interpolate the food share at the poverty rate in these countries. A second, quick and dirty, calculation is to just calculate the food share at the 20<sup>th</sup> percentile. A third is to adopt a common poverty definition as those at less than 60 percent of median consumption. While each of these methods produces slightly different results for each country, the typical food share for a "poor" household in a rich OECD country is very robustly right around 15 percent.

*PSR of median in poor country to the rich OECD country poor.* Table 6 shows the PSR calculations for the collection of countries for which we had household data and hence could match WLEC estimates with estimates of the PSR. We find that the PSR ratios show that, for the typical (median) household to choose the same food share as that of the rich OECD country poor the total expenditures in most poor countries would have to expand by at least *an order of magnitude.* For countries where the current food share is one half or higher the PSR using a WLEC of -.125 is over 15 (exp((.15-.5)/-.125))=exp(.35\*8)=exp(2.8)≈16.4). Even for "upper middle income" countries like Argentina and South Africa the PSR is over 5.

|             |                   | Food share at the 20th |                      |
|-------------|-------------------|------------------------|----------------------|
|             | Food share at     | percentile of          | Food share at 60% of |
|             | poverty incidence | consumption            | median consumption   |
| Australia   |                   | 0.183                  | 0.182                |
| Austria     | 0.156             | 0.157                  | 0.196                |
| Belgium     | 0.154             | 0.156                  | 0.169                |
| Canada      | 0.151             | 0.148                  | 0.144                |
| Denmark     | 0.138             | 0.137                  | 0.140                |
| Finland     | 0.153             | 0.152                  | 0.157                |
| France      | 0.148             | 0.148                  | 0.158                |
| Germany     | 0.149             | 0.148                  | 0.154                |
| Greece      | 0.197             | 0.205                  | 0.229                |
| Ireland     | 0.161             | 0.168                  | 0.166                |
| Luxembourg  | 0.130             | 0.128                  | 0.127                |
| Netherlands | 0.121             | 0.122                  | 0.139                |
| Norway      | 0.135             | 0.137                  | 0.141                |
| Portugal    | 0.203             | 0.211                  | 0.209                |
| Spain       | 0.229             | 0.236                  | 0.268                |
| Sweden      | 0.115             | 0.118                  | 0.120                |
| UK          | 0.119             | 0.123                  | 0.142                |
| USA         | 0.157             | 0.153                  | 0.153                |
| median      | 0.151             | 0.150                  | 0.156                |

Table 5. The typical share of food in consumption of the poor (estimated with three methodologies) in the rich OECD countries is about 15 % (ranging from 12%-24%)

See appendix table A.13 for notes and sources.

|             | Country               | Year    | Median<br>food share | PSR(Country median,-<br>.125,OECD poor) | Ratio of 60 percent of<br>American GDP per<br>capita in 2010 to country<br>PPP consumption | Years of rapid (4 ppa)<br>growth for median<br>household to reach food<br>share of OECD poor |
|-------------|-----------------------|---------|----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|             |                       |         |                      |                                         |                                                                                            |                                                                                              |
|             | Bangladesh*           | 2007    | 0.62                 | 42.95                                   |                                                                                            | 96                                                                                           |
|             | Philippines*          | 2009    | 0.5861               | 32.75                                   |                                                                                            | 89                                                                                           |
|             | Rural India           | 2009-10 | 0.58                 | 31.19                                   |                                                                                            | 88                                                                                           |
|             | Ethiopia              | 2004    | 0.57601              | 30.21                                   |                                                                                            | 87                                                                                           |
| ten largest | Indonesia             | 2007    | 0.57451              | 29.85                                   |                                                                                            | 87                                                                                           |
| non-OECD    | Pakistan              | 2010-11 | 0.55                 | 24.53                                   |                                                                                            | 82                                                                                           |
| countries   | Vietnam               | 2010    | 0.52079              | 19.42                                   |                                                                                            | 76                                                                                           |
|             | Urban India           | 2009-10 | 0.51                 | 17.81                                   |                                                                                            | 73                                                                                           |
|             | Rural China           | 2011    | 0.43                 | 9.39333                                 |                                                                                            | 57                                                                                           |
|             | Urban China           | 2011    | 0.38                 | 6.30                                    |                                                                                            | 47                                                                                           |
|             | Brazil*               | 2008-09 | 0.16682              | 1.14                                    |                                                                                            | 3                                                                                            |
|             | Armenia               | 2003    | 0.736                | 108.64                                  |                                                                                            | 120                                                                                          |
|             | Moldova               | 2004    | 0.64                 | 50.40                                   |                                                                                            | 100                                                                                          |
|             | Nepal                 | 2003    | 0.59                 | 33.78                                   | 20                                                                                         | 90                                                                                           |
| ILO         | Azerbaijan            | 2003    | 0.58                 | 31.19                                   |                                                                                            | 88                                                                                           |
|             | Uganda                | 2003    | 0.53                 | 20.91                                   | 27                                                                                         | 78                                                                                           |
|             | Lithuania             | 2003    | 0.4648               | 12.41                                   |                                                                                            | 64                                                                                           |
|             | Serbia and Montenegro | 2002    | 0.44                 | 10.18                                   |                                                                                            | 59                                                                                           |
|             | Bulgaria              | 2004    | 0.438                | 10.01                                   |                                                                                            | 59                                                                                           |

Table 6: The Pritchett-Spivack Ratio shows that expenditures of the median household in most developing countries would have to expand by at least a factor of 5 to reach the food share of the poor in rich OECD countries

|   | Belarus    | 2004    | 0.39  | 6.82  |     | 49  |
|---|------------|---------|-------|-------|-----|-----|
|   | Latvia     | 2003    | 0.383 | 6.45  |     | 48  |
|   | Argentina  | 1996    | 0.38  | 6.30  | 3.1 | 47  |
|   | Iran, Is   | 2003    | 0.29  | 3.06  | 3.9 | 29  |
|   | Turkey     | 2005    | 0.29  | 3.06  | 6   | 29  |
|   | Macau      | 2002-03 | 0.263 | 2.47  |     | 23  |
|   | Korea, R   | 2004    | 0.26  | 2.41  | 3   | 22  |
|   | Hungary    | 2005    | 0.25  | 2.23  | 2.9 | 20  |
|   | Malta      | 2005    | 0.21  | 1.62  | 2.2 | 12  |
|   | Singapore  | 2004    | 0.19  | 1.38  | 2.1 | 8   |
|   | Iceland    | 2001    | 0.17  | 1.17  | 1.6 | 4   |
|   | Cyprus     | 2005    | 0.16  | 1.08  | 1.8 | 2   |
|   | Tajikistan | 2003    | 0.71  | 88.87 |     | 114 |
|   | Nepal      | 1996    | 0.63  | 46.01 |     | 98  |
|   | Ghana      | 1998    | 0.62  | 41.50 |     | 95  |
|   | Malawi     | 2004    | 0.61  | 40.84 |     | 95  |
|   | Albania    | 2005    | 0.60  | 35.79 |     | 91  |
|   | Nepal      | 2003    | 0.59  | 34.47 |     | 90  |
| D | Vietnam    | 1997    | 0.58  | 31.29 |     | 88  |
| 1 | Bulgaria   | 2001    | 0.56  | 25.70 |     | 83  |
|   | Pakistan   | 1991    | 0.53  | 20.10 |     | 77  |
|   | Ecuador    | 1998    | 0.51  | 17.84 |     | 73  |
|   | Ecuador    | 1995    | 0.49  | 14.71 |     | 69  |
|   | Guatemala  | 2000    | 0.49  | 14.61 |     | 68  |
|   | Panama     | 2003    | 0.41  | 8.23  |     | 54  |
|   | Bosnia     | 2001    | 0.36  | 5.16  |     | 42  |
|   |            |         |       |       |     |     |

|        | Romania      | 1995 | 0.57 | 28.79 |      | 86    |  |
|--------|--------------|------|------|-------|------|-------|--|
|        | Guatemala    | 2006 | 0.45 | 11.02 |      | 61    |  |
|        | Estonia      | 2000 | 0.43 | 9.39  |      | 57    |  |
|        | Peru         | 2004 | 0.41 | 8.00  |      | 53    |  |
|        | South Africa | 2008 | 0.38 | 6.30  |      | 47    |  |
| LIS    | Hungary      | 1999 | 0.36 | 5.37  |      | 43    |  |
|        | Poland       | 2004 | 0.32 | 3.90  |      | 35    |  |
|        | Taiwan       | 2005 | 0.23 | 1.90  |      | 16    |  |
|        | Ukraine      | 1995 | 0.2  | 1.49  |      | 10    |  |
|        | Mexico       | 2004 | 0.2  | 1.49  |      | 10    |  |
|        | Slovenia     | 2004 | 0.18 | 1.27  |      | 6     |  |
| median |              |      | 0.45 | 10.60 | 3.00 | 60.17 |  |

notes: ILO & country office medians are food share of median consumption group. LIS and CLSP data are median food share. \*the national statistical agency does not report data by decile or quintile, so these food shares are the average of the middle income or consumption bracket reported. sources: see appendix tables A.1, A.2, A.3, A.4, A.5, and A.6.

Historical data also offers a useful comparison. Between 1890-1891 the US Commissioner of Labor published two reports on costs of production and workers' costs of living in selected industries in the US and Europe. The data include detailed household expenditure information, which allows us to calculate the food share of these industrial worker's households. As table 7 shows, the typical, low and middle income country household today has a food share last seen in leading countries at the turn of the century.

| US Region     | Median food share | n     |
|---------------|-------------------|-------|
| New England   | 0.48              | 1,239 |
| Mid-Atlantic  | 0.45              | 3,249 |
| South         | 0.42              | 1,167 |
| Midwest       | 0.41              | 1,154 |
| Country       |                   |       |
| Switzerland   | 0.52              | 52    |
| Germany       | 0.5               | 200   |
| Belgium       | 0.49              | 124   |
| France        | 0.49              | 335   |
| Great Britain | 0.49              | 1,024 |

# Table 7. Typical households in developing countries have food shares similar to industrial workers in rich countries at the turn of the century

Source: Cost of Living of Industrial Workers in the United States and Europe 1888-1890.

Sensitivity analysis (see Table 8) shows that, not surprisingly, the PSR is sensitive to the exact value of the Engel coefficient used, but by the same token, over a wide range of Engel coefficients from -.10 to -.15 the basic results—that the total expenditures of median households in typical developing country households could have to expand between 7-fold and 20-fold is completely robust<sup>8</sup>.

These results reemphasize what others have found looking at cross-country comparisons based household data and PPP calculations (Milanovic 2013a) but underline three key points about the development agenda.

First, it is obvious that "targeting" of transfers or programmatic interventions will play little to no role in helping the median consumer expand their consumption possibilities by a

<sup>&</sup>lt;sup>8</sup> Since the PSR formula is doubly non-linear (e.g. divided by WLEC and then exponentiated to get a ratio) the PSR is very sensitive to the WLEC—particularly when the food share gap is large and when the WLEC becomes low. So, for instance if the food share gap is .3 (.45-.15) and the WLEC is .125 the PSR is 11 but if the WLEC is .10 the PSR is 20 and if the WLEC is as small as -.075 the PSR is 54 and at a WLEC of -.05 the PSR is 403. This is one reason we prefer to choose a common WLEC rather than country by country as measurement error in income or consumption can produce attenuation bias which produces very small WLEC.

factor of 10. This has to come from sustained increases in income and that has to come from sustained improvements in productivity.

|                                                                   |                     | PSR at WLEC= |       |      |            |                |
|-------------------------------------------------------------------|---------------------|--------------|-------|------|------------|----------------|
|                                                                   | Averag <sup>–</sup> |              |       |      | Estimated  | PSR using each |
|                                                                   | share               | 10           | 125   | 15   | elasticity | WLEC           |
| Median of 82<br>countries with<br>average food shares<br>over .15 |                     | 18.5         | 10.32 | 6.99 | -0.104     | 8.33           |
| Country examples:                                                 |                     |              |       |      |            |                |
| Uganda                                                            | 0.49                | 29.61        | 15.04 | 9.57 | -0.083     | 60.46          |
| Guatemala                                                         | 0.43                | 17.49        | 9.87  | 6.74 | -0.158     | 6.11           |
| South Africa                                                      | 0.39                | 11.16        | 6.89  | 4.99 | -0.102     | 10.65          |

#### Table 8. Robustness of the PSR to the W-L Engel coefficient used

See appendix tables A.1, A.2, A.3, A.4, A.5, and A.6 for notes and sources.

Second, the first word that comes to mind about consumption of people who spend 40 to 50 percent of their total resources on food is "inadequate" not "unsustainable." The development challenge is not about achieving "sustainable" consumption (although the environmental consequences of increasing consumption need to be considered) at their *current* levels but reconciling the need for adequate and globally fair consumption possibilities across people on the planet today with not jeopardizing the possibilities for future generations.

Third, "broad based growth" has to be (on) the development agenda. In a 2013 paper Branko Milanovic uses PPP exchange rates to show that more than half of the variation in an individual's position on an international income distribution can be explained by GDP per capita and income distribution in their country of origin (Milanovic, 2013a). The PSR makes this point without relying on PPP calculations, GDP, or national accounts. In order for the median household in poor and middle income countries to reach the consumption possibilities the poor households in the rich countries enjoy today, poor countries will have to expand their consumption by a factor of 5 or more. Suppose that happens through sustained growth in their consumption that is rapid by current standards (e,g, 4 ppa). How long will it be, not to convergence of average incomes between countries but until the typical developing country household gets to *today*'s rich OECD country poor? Even with rapid growth of 4 ppa (one standard deviation above the historical mean for developing countries) it will take 50 to 100 years of growth (see column 7 of Table 6). So "growth" is not a passé agenda, it is the agenda of the foreseeable (and longer) future.

#### 5.2 Are the "rich" in poor countries rich?

In his 2011 book *The Globalization Paradox* Dani Rodrik has points out that, while students know that there are rich countries and poor countries, when asked to estimate the income differences of the "rich" of poor countries to the "poor" of rich countries they consistently get it wrong. Students often assume that the "rich" of poor countries are richer than the "poor" of rich countries when in fact most estimates using PPP suggest the 95<sup>th</sup> percentile of most poor countries is a large factor multiple lower than the rich country poverty line. Rodrik's 2007 calculations show that a poor person in a rich country is 3 times better off than a rich person in a poor country (see Table 9).

# Table 9. PPP per captia comparison reveals that the poorest in rich countries are better off than the richest in poor countries

|              | Overall average GDP<br>per capita | Representative per capita income of the<br>top decile of a poor country and the<br>bottom decile of a rich country |
|--------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Poor country | \$868                             | \$3,039                                                                                                            |
| Rich country | \$34,767                          | \$9,387                                                                                                            |

Notes: Values are 2004 PPP-adjusted dollars.

Source: Dani Rodrik's web blog "And the winner is...", 2007.

Nancy Birdsall makes a similar point in her 2010 study of the middle class in developing countries. She defines the global "middle class" as households making more than 10 PPP USD a day, and falling below the 95<sup>th</sup> percentile of the income distribution in their own country. She finds surprisingly, that many of the "middle income countries" do not have a middle class according to this definition. There are no households in India, Indonesia, or Ghana that both have consumption over \$10 per day and are below the 95<sup>th</sup> percentile because the 95<sup>th</sup> percentile is below \$10 per day. The "statistical rich"<sup>9</sup> in most poor or lower middle income countries – those in the top 20%, or 10% or 5% of their national income distributions – are globally poor in PPP terms. As Milanovic (2013a) points out, in a globalized world inter-country inequality is still the largest source of inequality.

The PSR can address this question by examining the food shares of the entire distribution of consumption expenditures and asking "At what percentile of the distribution of the 'rich' in a poor country does the food share of expenditure reach the food share of the typical poor

<sup>&</sup>lt;sup>9</sup> As opposed to the individual rich. Of course there are many Indian and Indonesian individuals with very high net worth. Forbes estimates there are 55 Indian billionaires. And these billionaires may even control substantial fractions of national output/wealth. But the "statistical rich" are those in the upper percentiles.

household in a rich country?" As we showed earlier, the typical food share of the poorest households in rich countries is .15, so we will use that food share as the target here.

```
PSR(\alpha^{Pth Percentile in developing country i}, \epsilon, \alpha^{Qth percentile in rich country j}) \approx 1
```

The answer is that for most of the poor and even middle income countries is: "never." The observed distributions just never cross over the support of the distributions.

# Figure 4. Food shares by percentile of the expenditure distribution for Indonesia 2011 (Rural and Urban) and the US quintiles of income 2010





Figure 5. Food shares by deciles of consumption for India 2009-2010 and the US by income quintiles 2010.

We use both the simple and a fully flexible Engel estimation to predict the food share at the 90<sup>th</sup> and 95<sup>th</sup> percentiles. Both of these methods show that, even the richest households in poor and middle income countries devote a much larger share of their household budgets to purchasing food than the poorest households in the rich OECD countries (see Figure 6). As the PSRs in Table 10 show, even rich households in poor countries would have to see substantial expansion of their total consumption to reach the food share of the poor households in rich countries.

Of course in countries like India or China or Brazil there are billionaires for whom the food share is essentially zero. These are the rich that Fitzgerald recognized are different—in all countries. But the "statistical" rich of the 95<sup>th</sup> percentile in poor countries have food shares 5 to 15 percentage points higher than the poor in rich countries.





Percentiles are in terms of consumption. Within each category countries are ordered by per capita PPP GDP in constant 2005 price, noted in the labels. Dark bars indicate food shares predicted from micro data.

Notes: Food shares for the grouped data are predicted values from the engel elasticty of each country and the the average consumption for the tenth decile (approximately the 95th percentile) or fifth quitile (approximately 90th percentile) group. Food shares for the micro data are perdicted by determining the lower bound of the 90th and 95th percentile s and then predicting the food share using the fully flexible model. sources: table 10, Penn World Tables 7.1.

|                     |              |             | PSR restricted   | PSR restricted   |
|---------------------|--------------|-------------|------------------|------------------|
|                     |              |             | model (Q5,       | model (D10,      |
|                     |              |             | 125, ) OECD      | 125, OECD        |
|                     | I            |             | poor)            | poor)            |
|                     | Albania      | 2002        |                  | 33.16            |
|                     | Argentina    | 1996-1997   |                  | 1.49             |
|                     | Armenia      | 2003        |                  | 46.12            |
|                     | Azerbaijan   | 2003        |                  | 9.17             |
|                     | Belarus      | 2004        |                  | 3.80             |
|                     | Bulgaria     | 2004        |                  | 2.63             |
| ILO                 | Hungary      | 2003        |                  |                  |
| (grouped            | Iran         | 2003        |                  | 1.34             |
| data)               | Latvia       | 2003        | 1.78             |                  |
|                     | Lithuania    | 2003        |                  | 2.35             |
|                     | Macau        | 2002 - 2003 |                  | 1.15             |
|                     | Moldova      | 2004        |                  | 5.84             |
|                     | Serbia &     |             |                  |                  |
|                     | Montenegro   | 2002        |                  | 4.74             |
|                     | Uganda       | 2003        |                  | 4.83             |
|                     | Ethiopia     | 2004        | 9 24             |                  |
| country             | China        | 2001        |                  | 2.83             |
| offices             | Rural India  | 2009        |                  | 7 38             |
| (grouped            | Urban India  | 2009        |                  | 2.67             |
| (grouped<br>data)   | Delviston    | 2007        | 7 73             | 2.07             |
| clata)              | Viotnom      | 2010        | 7.73             |                  |
|                     | Viculalli    | 2010        | 1.71             |                  |
|                     |              |             | PSR (90th,       | PSR (95th,       |
|                     |              |             | restricted model | restricted model |
|                     |              |             | elasticity,      | elasticity, OECD |
|                     | 1            |             | OECD poor)       | poor)            |
|                     | Guatemala    | 2006        | 1.49             |                  |
|                     | Estonia      | 2004        | 3.02             | 2.11             |
| T TC                | Mexico       | 2004        |                  |                  |
| LIS<br>(miano data) | Peru         | 2004        | 1.88             | 1.65             |
| (inicio data)       | Poland       | 2004        | 1.61             | 1.32             |
|                     | Slovenia     | 2004        | 1.11             |                  |
|                     | South Africa | 2008        | 1.87             |                  |
|                     | Indonesia    | 2007        | 38.69            | 25.04            |
| IFLS                | Indonesia    | 2000        | 85.46            | 47.16            |
| (micro data)        | Indonesia    | 1997        | 31.94            | 10.11            |
| (inicio data)       | Indonesia    | 1003        | 60.00            | 21.27            |
|                     | Indonesia    | 1773        | 09.99            | 31.27            |

# Table 10. Food share of rich in poor countries and PSRs compared to the poor in the rich OECD countries

Notes: Grouped data food shares are predicted values from the restricted elasticity of each country at the average consumption of tenth decile or fifth quintile group. Food shares for the micro data are predicted by determining the lower bound of the 90th and 95th percentile s and then predicting the food share using the fully flexible model. sourcse: see appendix tables A.2, A.3, A.4, A.6, A.10 and A.11

## 6. Conclusion

Although the bulk of this paper is narrow and technical, we are making a broad and important point that is relevant to current discussions about the post-2015 development agenda. Strangely, in spite of the fact that the typical person in the developing world has a level of consumption possibilities that is roughly an *order of magnitude* lower than *the poor* in rich countries, the need for sustained growth in material standard of living of the typical person in the developing world is not the dominant theme of these discussions.

Intriguingly, the word seemingly most frequently modifying the desirable type of "consumption" is not "higher" but "sustainable." But who wants to merely "sustain" their current levels of consumption? This might be a goal for the world's doubly rich (rich in rich countries) whose consumption they might regard as high enough. However, from their current levels, the material possibilities of the typical individual in a typical poor country would have to grow at their recent pace for 100 years before they would enjoy the consumption possibilities that the current *poor* in rich countries enjoy today. We argue word that should be most associated with "growth" is "rapid."<sup>10</sup>

Moreover, there is a steady increase in the attention to inequality within countries as a development issue. There is a general sense among rich country residents and tax payers that "the rich" in poor countries are doing well, even better than "the poor" in rich countries and hence if resources could just be redistributed from "the rich" to "the poor" within poor countries that problems of poverty could be solved. As we show, almost nothing could be further from the truth. Of course, poor countries have a comparatively handful of the globally super-rich, but the richest 10% in poor countries have a food share that is typically *double* that of the *poor* in the rich OECD countries — suggesting the material standard of living of *the poor* in the OECD is *three times as high* as that of *the rich* in "middle income" countries like India or Indonesia.

<sup>&</sup>lt;sup>10</sup> This is not to say that growth of GDP is itself a goal, it is just a means to the end of higher human well-being. But one can take any measure of well-being and expanding the productivity of individuals will be essential to broad based improvements in that measure.

### References

- "10-8 Per Capita Annual Cash Living Expenditure of Urban Households by Income Percentile." Government. China Statistical Yearbook 2011, 2011. http://www.stats.gov.cn/tjsj/ndsj/2011/indexeh.htm.
- Almas, Ingvild. "International Income Inequality: Measuring PPP Bias by Estimating Engel Curves for Food." American Economic Review, 102(2): 1093-1117 (2012).
- Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 7.1, Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania, Nov 2012
- Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 7.0, Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania, June 2011.
- Anker, Richard. "Engel's Law Around the World 150 Years Later." Political Economy Research Institute (2011).

http://www.peri.umass.edu/fileadmin/pdf/working\_papers/working\_papers\_201-250/WP247.pdf.

- Birdsall, Nancy. "The (Indispensable) Middle Class." Center for Global Development Working Paper Series (2010).
- "Chapter 20 Family Income and Expenditure, Tables 20-6, 20-7-b, and 20-7-c." Ministry of Internal Affaris and Communications, n.d.

http://www.stat.go.jp/english/data/chouki/20.htm.

- Collier, Paul. The Bottom Billion. New York: Oxford University Press, 2007.
- Deaton, Angus, Jed Friedman, and Alatas Vivi. "Purchasing Power Parity Exchange Rates from Household Survey Data: India and Indonesia" (2004). http://www.princeton.edu/~deaton/downloads/PPP\_Exchange\_rates\_may04\_relabele

d\_mar11.pdf.

- "Detailed Tables of HIES 2010." Government. Bangladesh Bureau of Statistics, 2010. http://www.bbs.gov.bd/PageWebMenuContent.aspx?MenuKey=320.
- "Household Integrated Economic Survey (HIES) 2010-11." Accessed June 11, 2013. http://www.pbs.gov.pk/content/household-integrated-economic-survey-hies-2010-11.

Houthakker, H.S. "An International Comparison of Households Expenditure Patters, Commemorating the Century of Engel's Law." Econometrica 25, no. 4 (1957).

- General Statistics Office. Results of the Viet Nam Household Living Standards Survey 2010. Statistical Publishing House, 2010.
- Ghani, Ejaz. The Poor Half Billion in South Asia: What Is Holding Back Lagging Regions? OUP Catalogue. Oxford University Press, 2010.

http://econpapers.repec.org/bookchap/oxpobooks/9780198068846.htm.

- Inglehart, Ronald. Modernization and Postmodernization: Cultural, Economic, and Poltical Change in 43 Societies. Princeton University Press, 1997.
- International Labor Organization. "HIES Houshold Income and Expenditure Statistics." Data portal. LABORSTA Internet, n.d. http://laborsta.ilo.org/STP/guest.

- Kenny, Charles, and Lant Pritchett. "Promoting Millennium Development Ideals: The Risks of Defining Development Down" (2013).
- Leser, C. "Forms of Engel Functions." Econometrica 31 (1963): 694-703.
- Milanovic, Branko. "Global Inequaltiy of Opportunity: How Much of Our Income Is Determined by Where We Live?" Unpublished (2013a).
- Milanovic, Branko. "The Inequality Possibility Frontier : Extensions and New Applications." Policy Research Working Paper (2013b).
- National Statistical Organization, National Sample Survey Office, Ministry of Statistics and Programme Implementation Government of India. Key Indicators of Household Consumer Expenditure in India 2009-2010, 2011.
- "Pesquisa Nacional Por Amostra De Domicílios." Government. Instituto Brasileiro De Geografia e Estatística, n.d. http://www.sidra.ibge.gov.br/pnad/default.asp.
- Republic of the Philippines National Statistics Office. "2009 FIES (Additional Tables)." Accessed June 11, 2013. http://www.census.gov.ph/content/2009-fies-additionaltables.
- Rodrik, Dani. The Globalization Paradox: Democracy and the Future of the World Economy. W. W. Norton & Company, 2011.

http://rodrik.typepad.com/dani\_rodriks\_weblog/2007/05/and\_the\_winner\_.html.

Statistics Indonesia. Expenditures for Consumption of Indonesia. Statistics Indoensia, 2011. The Federal Democratic Republic of Ethiopia Central Statistics Agency. Household Income

Consumption and Expenditure (HICE) Survey 2004/5 Volume I, n.d.

Working, H. "Statistical Laws of Family Expenditures." Journal of the American Statistical Association 38 (1943): 43–56

# Appendix

| •            |      | U          | , , , , , , , , , , , , , , , , , , , |                | -      | Mean          | PSR (country         | PSR (country           | PSR (country          | PSR (country avg,                 |
|--------------|------|------------|---------------------------------------|----------------|--------|---------------|----------------------|------------------------|-----------------------|-----------------------------------|
|              |      | Elasticity | Absolute<br>value of t                | R <sup>2</sup> | n      | tood<br>share | avg,1,<br>OECD poor) | avg,125,<br>OECD poor) | avg,15,<br>OECD poor) | country elasticity,<br>OECD poor) |
| Albania      | 2002 | -0.0438    | 32.35***                              | 0.0381         | 3,599  | 0.67          | 186.047              | 65.418                 | 32.590                | 150089.819                        |
| Albania      | 2005 | -0.0646    | 32.56***                              | 0.0684         | 3,638  | 0.59          | 79.998               | 33.301                 | 18.566                | 887.613                           |
| Albania      | 1996 | -0.0999    | 29.49***                              | 0.1648         | 1,503  | 0.6           | 88.323               | 36.046                 | 19.833                | 88.632                            |
| Bulgaria     | 2001 | -0.1034    | 40.01***                              | 0.1242         | 2,500  | 0.56          | 62.302               | 27.265                 | 15.716                | 54.295                            |
| Bulgaria     | 1995 | -0.0317    | 22.10***                              | 0.0173         | 2,460  | 0.62          | 111.609              | 43.467                 | 23.181                | 2901848.339                       |
| Bosnia       | 2001 | -0.0479    | 28.01***                              | 0.0384         | 5,400  | 0.34          | 8.029                | 5.293                  | 4.010                 | 77.627                            |
| Ecuador      | 1995 | -0.1152    | 54.95***                              | 0.2298         | 5,661  | 0.48          | 26.549               | 13.780                 | 8.900                 | 17.216                            |
| Ecuador      | 1998 | -0.1207    | 64.26***                              | 0.2949         | 5,693  | 0.49          | 30.265               | 15.302                 | 9.712                 | 16.883                            |
| Ghana        | 1987 | -0.0207    | 30.17***                              | 0.0119         | 3,104  | 0.70          | 250.636              | 83.030                 | 39.752                | 398314299913.121                  |
| Ghana        | 1988 | -0.0348    | 32.41***                              | 0.0314         | 3,181  | 0.67          | 181.817              | 64.225                 | 32.094                | 3077285.357                       |
| Ghana        | 1991 | -0.0528    | 39.58***                              | 0.0652         | 4,523  | 0.61          | 99.683               | 39.710                 | 21.499                | 6118.343                          |
| Ghana        | 1998 | -0.0340    | 39.46***                              | 0.0377         | 5,998  | 0.60          | 93.691               | 37.788                 | 20.628                | 625475.877                        |
| Guatemala    | 2000 | -0.0990    | 100.56***                             | 0.3034         | 7,276  | 0.48          | 27.113               | 14.013                 | 9.025                 | 28.072                            |
| Malawi       | 2004 | -0.0345    | 62.41***                              | 0.0296         | 11,280 | 0.61          | 94.917               | 38.183                 | 20.808                | 529011.672                        |
| Nepal        | 2003 | -0.1922    | 98.54***                              | 0.5578         | 3,912  | 0.56          | 59.086               | 26.133                 | 15.170                | 8.348                             |
| Nepal        | 1996 | -0.1591    | 75.19***                              | 0.4016         | 3,373  | 0.6           | 85.370               | 35.079                 | 19.388                | 16.372                            |
| Pakistan     | 1991 | -0.0940    | 53.87***                              | 0.1462         | 4,794  | 0.52          | 39.805               | 19.053                 | 11.658                | 50.362                            |
| Panama       | 2003 | -0.1320    | 115.29***                             | 0.4325         | 6,363  | 0.43          | 16.412               | 9.378                  | 6.458                 | 8.331                             |
| Panama       | 1997 | -0.1109    | 102.59***                             | 0.3794         | 4,938  | 0.47          | 24.288               | 12.833                 | 8.387                 | 17.762                            |
| Tajikistan   | 2003 | -0.0552    | 64.94***                              | 0.0528         | 4,136  | 0.7           | 221.628              | 75.249                 | 36.623                | 17607.785                         |
| Vietnam      | 1992 | -0.1405    | 69.26***                              | 0.3443         | 4,799  | 0.62          | 105.214              | 41.463                 | 22.287                | 27.464                            |
| Vietnam      | 1997 | -0.1572    | 92.91***                              | 0.4629         | 5,999  | 0.57          | 65.694               | 28.446                 | 16.281                | 14.340                            |
| Median       |      | -0.0965    |                                       |                |        |               | 82.684               | 34.190                 | 18.977                | 65.961                            |
| Standard dev |      | 0.0493     |                                       |                |        |               |                      |                        |                       |                                   |

### A.1 Comparative Living Statistics Project - WLEC estimates, average food share & PSR

Source: World Bank Comparative Living Statistics Project. \*\*\* p<0.001, \*\* p<0.01, \* p<0.05

|        | Elasticity | Absolute<br>value of t | R <sup>2</sup> | n      | Mean<br>food<br>share | PSR (country<br>average,1,<br>OECD poor) | PSR (country<br>average,125,<br>OECD poor) | PSR (country<br>average,15,<br>OECD poor) | PSR (country average,<br>country own elasticity,<br>OECD poor) |
|--------|------------|------------------------|----------------|--------|-----------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| 2007   | -0.0824    | 44.30***               | 0.134          | 12,658 | 0.56                  | 61.286                                   | 26.909                                     | 15.544                                    | 147.615                                                        |
| 2000   | -0.0824    | 40.68***               | 0.139          | 10,229 | 0.60                  | 85.915                                   | 35.258                                     | 19.471                                    | 222.418                                                        |
| 1997   | -0.0942    | 40.41***               | 0.178          | 7,536  | 0.57                  | 65.463                                   | 28.366                                     | 16.243                                    | 84.686                                                         |
| 1993   | -0.0747    | 30.95***               | 0.118          | 7,136  | 0.56                  | 62.505                                   | 27.336                                     | 15.750                                    | 253.613                                                        |
| Median | -0.0824    |                        |                |        |                       | 63.984                                   | 27.851                                     | 15.996                                    | 185.016                                                        |

#### A.2 Indonesia Family Life Survey - WLEC estimates, average food share & PSR

Notes: The RAND cooperation provides access to cleaned standardized data files of these data. Estimates are based on this micro data analysis. Source: Indonesia Family Life Survey (IFLS). \*\*\* p<0.001, \*\* p<0.01, \* p<0.05

| A.3 LIS - WLEC estimates, average food share & PSR |
|----------------------------------------------------|
|----------------------------------------------------|

| Country      | Year | Elasticity | Absolute<br>value t | R <sup>2</sup> | n      | Mean<br>food<br>share | PSR (country<br>average,1,<br>OECD poor) | PSR (country<br>average,<br>125, OECD<br>poor) | PSR (country<br>average,15,<br>OECD poor) | PSR (country<br>average,<br>country own<br>elasticity,<br>OECD poor) |
|--------------|------|------------|---------------------|----------------|--------|-----------------------|------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| Israel       | 2005 | -0.0642    | 201.99              | 0.4958         | 41,492 | 0.160                 |                                          |                                                |                                           |                                                                      |
| Б            | 2005 | 0.0450     | 10 (7               | 0.457          | 10.040 | 0.470                 | 4 004                                    | 4 4 7 9                                        | 1 1 10                                    | 4 250                                                                |
| France       | 2005 | -0.0650    | 43.67               | 0.15/          | 10,240 | 0.170                 | 1.221                                    | 1.1/3                                          | 1.142                                     | 1.359                                                                |
| Germany      | 1983 | -0.0627    | 89.72               | 0.1584         | 42,752 | 0.201                 | 1.659                                    | 1.499                                          | 1.401                                     | 2.243                                                                |
| Slovenia     | 2004 | -0.0567    | 20.26               | 0.0993         | 3,725  | 0.201                 | 1.659                                    | 1.499                                          | 1.402                                     | 2.443                                                                |
| Ukraine      | 1995 | -0.0935    | 63.15               | 0.3713         | 6,755  | 0.216                 | 1.929                                    | 1.692                                          | 1.550                                     | 2.020                                                                |
| Mexico       | 2004 | -0.0983    | 126.4               | 0.4142         | 22,595 | 0.223                 | 2.083                                    | 1.799                                          | 1.631                                     | 2.109                                                                |
| Taiwan       | 2005 | -0.1044    | 93.4                | 0.3894         | 13,681 | 0.237                 | 2.398                                    | 2.013                                          | 1.791                                     | 2.311                                                                |
| Italy        | 2000 | -0.1233    | 39.03               | 0.16           | 8,001  | 0.305                 | 4.706                                    | 3.452                                          | 2.808                                     | 3.513                                                                |
| Poland       | 2004 | -0.1555    | 160.34              | 0.4439         | 32,214 | 0.346                 | 7.066                                    | 4.779                                          | 3.682                                     | 3.515                                                                |
| Spain        | 1980 | -0.1512    | 108.6               | 0.3298         | 23,972 | 0.381                 | 10.114                                   | 6.367                                          | 4.677                                     | 4.618                                                                |
| South        |      |            |                     |                |        |                       |                                          |                                                |                                           |                                                                      |
| Africa       | 2008 | -0.1020    | 64.71               | 0.3648         | 7,291  | 0.391                 | 11.163                                   | 6.890                                          | 4.995                                     | 10.645                                                               |
| Hungry       | 1999 | -0.1240    | 10.83               | 0.0739         | 1,472  | 0.393                 | 11.354                                   | 6.984                                          | 5.052                                     | 7.097                                                                |
| Peru         | 2004 | -0.1672    | 100.55              | 0.3543         | 18,432 | 0.415                 | 14.142                                   | 8.325                                          | 5.848                                     | 4.879                                                                |
| Guatemala    | 2006 | -0.1581    | 131.89              | 0.5601         | 13,664 | 0.436                 | 17.493                                   | 9.870                                          | 6.739                                     | 6.114                                                                |
| Estonia      | 2000 | -0.1509    | 45.17               | 0.2671         | 5,601  | 0.444                 | 18.872                                   | 10.487                                         | 7.088                                     | 7.008                                                                |
| Romania      | 1995 | -0.1796    | 129.59              | 0.3472         | 31,571 | 0.574                 | 69.162                                   | 29.641                                         | 16.849                                    | 10.573                                                               |
| Median       |      | -0.1138    |                     |                |        |                       | 7.066                                    | 4.779                                          | 3.682                                     | 3.515                                                                |
| Standard dev |      | 0.0411     |                     |                |        |                       |                                          |                                                |                                           |                                                                      |

Notes: \*\*\* p<0.001, \*\* p<0.01, \* p<0.05 Source: Luxembourg Income Study.

| Country        | Year      | Elasticity | Absolute value t | $\mathbb{R}^2$ | Ν  | Mean food share |
|----------------|-----------|------------|------------------|----------------|----|-----------------|
| Australia      | 1998-1999 | -0.0575    | 21.72***         | 0.983          | 10 | 0.13            |
| Belgium        | 2001      | -0.0165    | 4.731**          | 0.737          | 10 | 0.14            |
| Cyprus         | 2003      | -0.0913    | 19.87***         | 0.980          | 10 | 0.18            |
| Czech Republic | 2003      | -0.084     | 10.55***         | 0.933          | 10 | 0.18            |
| Denmark        | 2001-2003 | -0.0369    | 32.11***         | 0.992          | 10 | 0.08            |
| Finland        | 2001      | -0.117     | 24.10***         | 0.986          | 10 | 0.14            |
| France         | 2001      | -0.061     | 5.224***         | 0.773          | 10 | 0.21            |
| Hong Kong      | 1999-2000 | -0.0637    | 9.578***         | 0.920          | 10 | 0.12            |
| Iceland        | 2001-2003 | -0.0902    | 68.24***         | 1.000          | 4  | 0.16            |
| Isle of Man    | 1995-1996 | -0.0616    | 7.550**          | 0.950          | 5  | 0.20            |
| Netherlands    | 2000      | -0.0094    | 2.03             | 0.340          | 10 | 0.11            |
| Norway         | 2002      | -0.0437    | 11.98***         | 0.973          | 6  | 0.13            |
| Singapore      | 2002      | -0.0739    | 7.483**          | 0.949          | 5  | 0.24            |
| Spain          | 2002      | -0.116     | 22.83***         | 0.985          | 10 | 0.19            |
| Switzerland    | 2003      | -0.0344    | 15.30***         | 0.967          | 10 | 0.09            |
| United Kingdom | 2003-2004 | -0.0677    | 15.66***         | 0.968          | 10 | 0.12            |
| United States  | 2003      | -0.0609    | 27.98***         | 0.990          | 10 | 0.12            |
| Median         |           | -0.0616    |                  |                |    |                 |

A.4a International Labor Organization - WLEC estimates, average food share & PSR (countries with food share below .25)

Notes: estimates based on grouped data. Some country data is grouped by income or expenditure brackets others by expenditure quantiles. Sources: International Labor Organization Household Income Expenditure Survey database. \*\*\* p<0.001, \*\* p<0.01, \* p<0.05

|                    | -       |            |          |                | -  |       | ·            |              |              | PSR (country |
|--------------------|---------|------------|----------|----------------|----|-------|--------------|--------------|--------------|--------------|
|                    |         |            |          |                |    | Mean  | PSR (country | PSR (country | PSR (country | avg, country |
|                    |         |            | Absolute |                |    | food  | avg,1,       | avg,125,     | avg,15,      | elasticity,  |
| Country            | Year    | Elasticity | value t  | $\mathbb{R}^2$ | Ν  | share | OECD poor)   | OECD poor)   | OECD poor)   | OECD poor)   |
| Albania            | 2002    | -0.0637    | 5.181*** | 0.770          | 10 | 0.64  | 138.858      | 51.7676      | 26.8152      | 2309.59      |
| Argentina          | 1996-97 | -0.173     | 25.98*** | 0.988          | 10 | 0.35  | 7.76649      | 5.15442      | 3.92178      | 3.27025      |
| Armenia            | 2003    | -0.0611    | 2.06     | 0.346          | 10 | 0.71  | 267.736      | 87.5316      | 41.5404      | 9404.43      |
| Azerbaijan         | 2003    | -0.222     | 28.98*** | 0.991          | 10 | 0.57  | 66.8502      | 28.8458      | 16.4716      | 6.63924      |
| Belarus            | 2004    | -0.113     | 9.507*** | 0.919          | 10 | 0.39  | 10.5525      | 6.58696      | 4.81102      | 8.04683      |
| Bulgaria           | 2004    | -0.204     | 12.63*** | 0.952          | 10 | 0.43  | 15.8142      | 9.10412      | 6.30036      | 3.87051      |
| Croatia            | 2003    | -0.0682    | 19.55*** | 0.979          | 10 | 0.29  | 4.06997      | 3.07378      | 2.54914      | 7.83121      |
| Estonia            | 2004    | -0.152     | 50.42*** | 0.999          | 5  | 0.32  | 5.74502      | 4.0498       | 3.2077       | 3.15888      |
| Hungary            | 2003    | -0.111     | 21.28*** | 0.983          | 10 | 0.27  | 3.37796      | 2.64804      | 2.25132      | 2.9941       |
| Rural India        | 2003    | -0.106     | 11.01*** | 0.924          | 12 | 0.57  | 68.6644      | 29.4704      | 16.7683      | 54.0463      |
| Urban India        | 2003    | -0.133     | 23.08*** | 0.982          | 12 | 0.49  | 29.6204      | 15.0408      | 9.57327      | 12.7779      |
| Iran               | 2003    | -0.0821    | 20.94*** | 0.982          | 10 | 0.29  | 4.0874       | 3.08431      | 2.55642      | 5.55596      |
| Korea              | 2004    | -0.0772    | 12.19*** | 0.949          | 10 | 0.26  | 2.88558      | 2.33446      | 2.02685      | 3.946        |
| Latvia             | 2003    | -0.184     | 16.53*** | 0.989          | 5  | 0.37  | 8.90548      | 5.75077      | 4.2964       | 3.28185      |
| Lithuania          | 2003    | -0.181     | 57.45*** | 0.998          | 10 | 0.45  | 19.5434      | 10.7845      | 7.25548      | 5.16725      |
| Macau              | 2002-03 | -0.062     | 20.63*** | 0.982          | 10 | 0.25  | 2.68391      | 2.203        | 1.93128      | 4.91541      |
| Maldives           | 2002-03 | -0.0055    | 0.219    | 0.004          | 14 | 0.28  | 3.57322      | 2.7698       | 2.33726      | 1.3E+10      |
| Mauritius          | 2001-02 | -0.126     | 21.13*** | 0.987          | 8  | 0.36  | 8.27027      | 5.4202       | 4.08959      | 5.34798      |
| Mexico             | 2002    | -0.0768    | 15.63*** | 0.968          | 10 | 0.27  | 3.47546      | 2.70901      | 2.29443      | 5.06341      |
| Moldova            | 2004    | -0.181     | 11.48*** | 0.943          | 10 | 0.60  | 91.1204      | 36.9566      | 20.2493      | 12.0965      |
| Panama             | 1997-98 | -0.145     | 21.80*** | 0.975          | 14 | 0.32  | 5.54373      | 3.93588      | 3.13233      | 3.25812      |
| Poland             | 2003    | -0.165     | 20.09*** | 0.993          | 5  | 0.33  | 6.08707      | 4.24157      | 3.3338       | 2.98813      |
| Romania            | 2003    | -0.272     | 24.20*** | 0.987          | 10 | 0.50  | 34.7564      | 17.0934      | 10.6502      | 3.68601      |
| Serbia &           |         |            |          |                |    |       |              |              |              |              |
| Montenegro         | 2002    | -0.114     | 18.00*** | 0.976          | 10 | 0.44  | 18.1247      | 10.1535      | 6.89996      | 12.6983      |
| Sri Lanka          | 2002    | -0.175     | 10.85*** | 0.936          | 10 | 0.54  | 49.6862      | 22.7504      | 13.5152      | 9.31703      |
| Turkey             | 2003    | -0.11      | 34.58*** | 0.993          | 10 | 0.32  | 5.58047      | 3.95673      | 3.14616      | 4.773        |
| Uganda             | 2003    | -0.0826    | 6.138*** | 0.825          | 10 | 0.49  | 29.6121      | 15.0375      | 9.57148      | 60.456       |
| W. Bank and Gaza   | 2004    | -0.029     | 3.109*   | 0.659          | 7  | 0.30  | 4.49853      | 3.33009      | 2.72509      | 178.635      |
| Median             |         | -0.1135    |          | -              |    |       | 8.58788      | 5.58549      | 4.193        | 5.45197      |
| Standard deviation |         | 0.06159    |          |                |    |       |              |              |              |              |

#### A.4b International Labor Organization - WLEC etstimates, average food share & PSR (countries with food share above .25)

Notes: estimates based on grouped data. Some country data is grouped by income or expenditure brackets others by expenditure quantiles. Sources: International Labor Organization Household Income Expenditure Survey database. \*\*\* p<0.001, \*\* p<0.05

| Country         | Year | Scope    | Туре        | Elasticity | Absolute value of t | $\mathbb{R}^2$ | Ν  | Mean food share |
|-----------------|------|----------|-------------|------------|---------------------|----------------|----|-----------------|
| Argentina       | 1969 | Urban    | Expenditure | -0.134     | 9.499               | 0.968          | 5  | 0.356           |
| Australia       | 1976 | National | Expenditure | -0.123     | 5.733               | 0.892          | 6  | 0.195           |
| Austria         | 1974 | National | Expenditure | -0.232     | 19.695              | 0.965          | 16 | 0.265           |
| Bangladesh      | 1974 | National | Expenditure | -0.081     | 4.343               | 0.632          | 13 | 0.710           |
| Brazil          | 1974 | National | Expenditure | -0.149     | 14.291              | 0.967          | 9  | 0.253           |
| Canada          | 1976 | Urban    | Income      | -0.183     | 8.931               | 0.899          | 11 | 0.152           |
| Chile           | 1978 | Urban    | Expenditure | -0.150     | 6.799               | 0.939          | 5  | 0.511           |
| Colombia        | 1972 | National | Expenditure | -0.139     | 16.392              | 0.971          | 10 | 0.445           |
| Fiji            | 1973 | National | Expenditure | -0.093     | 2.302               | 0.726          | 4  | 0.389           |
| Finland         | 1976 | National | Expenditure | -0.153     | 4.813               | 0.743          | 10 | 0.257           |
| Greece          | 1974 | National | Expenditure | -0.116     | 11.355              | 0.942          | 10 | 0.370           |
| Guatemala       | 1979 | National | Expenditure | -0.143     | 12.775              | 0.959          | 9  | 0.541           |
| Hong Kong       | 1980 | Urban    | Expenditure | -0.054     | 3.603               | 0.520          | 15 | 0.379           |
| India Rural     | 1974 | Rural    | Expenditure | -0.117     | 7.397               | 0.820          | 14 | 0.749           |
| India Urban     | 1974 | Urban    | Expenditure | -0.063     | 2.185               | 0.285          | 14 | 0.677           |
| Indonesia       | 1978 | National | Expenditure | -0.122     | 6.958               | 0.874          | 9  | 0.631           |
| Indonesia       | 1980 | National | Expenditure | -0.092     | 8.043               | 0.878          | 11 | 0.679           |
| Japan           | 1974 | National | Expenditure | -0.178     | 35.972              | 0.988          | 18 | 0.342           |
| Kenya           | 1975 | Rural    | Expenditure | -0.039     | 2.442               | 0.544          | 7  | 0.752           |
| Malawi          | 1980 | Urban    | Expenditure | -0.107     | 7.725               | 0.909          | 8  | 0.277           |
| Mexico          | 1977 | National | Expenditure | -0.172     | 15.765              | 0.958          | 13 | 0.366           |
| Nepal           | 1975 | Urban    | Expenditure | -0.295     | 22.040              | 0.988          | 8  | 0.575           |
| Pakistan        | 1979 | Urban    | Expenditure | -0.151     | 42.321              | 0.994          | 12 | 0.482           |
| Senegal         | 1975 | Urban    | Expenditure | -0.176     | 18.993              | 0.986          | 7  | 0.439           |
| Somalia         | 1977 | Urban    | Expenditure | -0.006     | 0.189               | 0.005          | 9  | 0.705           |
| Sri Lanka       | 1979 | National | Expenditure | -0.275     | 26.778              | 0.988          | 11 | 0.575           |
| Sri Lanka       | 1982 | National | Expenditure | -0.191     | 11.063              | 0.939          | 10 | 0.617           |
| Sri Lanka       | 1981 | National | Expenditure | -0.143     | 7.646               | 0.880          | 10 | 0.657           |
| Sudan           | 1979 | Urban    | Expenditure | -0.228     | 5.119               | 0.897          | 5  | 0.526           |
| Turkey          | 1979 | Urban    | Expenditure | -0.146     | 12.661              | 0.899          | 20 | 0.438           |
| Median          |      |          |             | -0.143     |                     |                |    |                 |
| Standard deviat | tion |          |             | 0.064209   |                     |                |    |                 |

A.5 Food and Agriculture Organization - WLEC estimates and average food share

Notes: estimates are based on grouped data. sources: Food and Agriculture Organization, 1981

| A.6 | Various c    | country statistical | offices - | WLEC estimates. | average food share  | & PSR |
|-----|--------------|---------------------|-----------|-----------------|---------------------|-------|
|     | 1 4110 400 0 |                     | 0111000   |                 | a cinge icou cinare |       |

|                    | X       |            | Absolute   | Da             |    | Mean<br>food | PSR (country avg,1, | PSR (country avg,125, | PSR (country avg,15, | PSR (country avg,<br>country own elasticity, |
|--------------------|---------|------------|------------|----------------|----|--------------|---------------------|-----------------------|----------------------|----------------------------------------------|
| Country            | Year    | Elasticity | value of t | $\mathbb{R}^2$ | n  | share        | OECD poor)          | OECD poor)            | OECD poor)           | OECD poor)                                   |
| Bangladesh         | 2007    | -0.123     | 8.804***   | 0.820          | 19 | 0.59         | 80.6956             | 33.5336               | 18.6738              | 35.5046                                      |
| Brazil             | 2008    |            |            |                |    | 0.18         |                     |                       |                      |                                              |
| Rural China        | 2011    | -0.120     | -42.31***  | 0.998          | 5  |              |                     |                       |                      |                                              |
| Urban China        | 2011    | -0.109     | 22.31***   | 0.990          | 7  | 0.38         | 10.0003             | 6.30971               | 4.64167              | 8.26879                                      |
| Ethiopia           | 2004    | -0.215     | 5.018*     | 0.894          | 5  | 0.54         | 49.5994             | 22.7186               | 13.4995              | 6.14602                                      |
| Rural India        | 2009-10 | -0.158     | 2.156      | 0.367          | 10 | 0.56         | 62.6247             | 27.3777               | 15.7699              | 13.7145                                      |
| Urban India        | 2009-10 | -0.156     | 36.77***   | 0.994          | 10 | 0.49         | 28.9515             | 14.7685               | 9.42861              | 8.64906                                      |
| Pakistan           | 2010-11 |            |            |                |    | 0.53         |                     |                       |                      |                                              |
| Philippines        | 2009    |            |            |                |    | 0.53         |                     |                       |                      |                                              |
| Vietnam            | 2010    | -0.114     | 17.68***   | 0.990          | 5  | 0.50         | 34.689              | 17.0669               | 10.6364              | 22.4412                                      |
| Median             |         | -0.140     |            |                |    |              | 42.1442             | 19.8927               | 12.068               | 11.1818                                      |
| Standard deviation |         | 0.040      |            |                |    |              |                     |                       |                      |                                              |

Notes: Brazil, Pakistan, and the Philippines report household expenditures but not per capita expenditures, so the Engel elasticity could not be computed. When computing total expenditure India National Sample Survey does not impute a value for owner occupied housing, but do include a value for rent. This raises the food share significantly on any Indian households who own their own home, the effect will be particularly pronounced for richer urban households. The Filipino National Statistics office and the Government of Pakistan Statistics Division include tobacco purchases in its total food expenditure calculation, raising the food share for Filipino and Pakistani households.

Sources: Bangladesh Bureau of Statistics, Instituto Brasileiro de Geografia e Estatística, China Statistical Yearbook, The Federal Democratic Republic of Ethiopia Central Statistics Agency, National Statistical Organization, National Sample Survey Office, Ministry of Statistics and Programme Implementation Government of India, Government of Pakistan Statistics Division Federal Bureau of Statistics, Republic of the Philippines National Statistics Office, Vietnam Statistical publishing office. \*\*\* p < 0.001, \*\* p < 0.05

#### A.7 Houthakker Historical Cross National Data

| Year                               | Elasticity | Absolute<br>value of t | R <sup>2</sup> | n  | Mean food share |
|------------------------------------|------------|------------------------|----------------|----|-----------------|
| Various years between<br>1853-1955 | -0.105     | 11.47                  | 0.73298        | 50 | 0.47            |

Source: Author's analysis of data from table 4 of Houthakker (1957).

#### A.8 Anker Cross National Estimates

| Year    | Elasticity | Absolute<br>value of t | R <sup>2</sup> | n   | Mean food share |
|---------|------------|------------------------|----------------|-----|-----------------|
| Various | -0.109     | 23.43                  | 0.73298        | 207 | 0.29            |

Source: Anker 2011 table 12 column 6. Mean food share, Anker 2011 table 6 column 1.

#### A.9 Japan Historical WLEC

| Year      | Elasticity | Absolute<br>value of t | R <sup>2</sup> | n  | Mean food share |
|-----------|------------|------------------------|----------------|----|-----------------|
| 1955-2007 | -0.1747    | 45.9                   | 0.9764         | 53 | 0.21794         |

Notes: estimates are based on average food share and total expenditure from Japanese grouped data available for the 38 years between 1955-1992. Data are available from 1926 -2007, but we conduct the analysis only on the data from 1955- 1992, because CPI data are only available beginning in 1955 and we want to leave out years during Japan's economic crisis. Source: Japanese historical house hold expenditure tables.

|                        | Guatem        | nala (2006)    | Estonia (2000) |               | Mexic             | co (2004)      | Peru (2004)   |               |  |
|------------------------|---------------|----------------|----------------|---------------|-------------------|----------------|---------------|---------------|--|
| ln pc cons             | -0.1580595    | -0.1728373     | -0.1508826     | -0.0570048    | -0.098315         | -0.1149438     | -0.167153     | -0.1112333    |  |
|                        | (.0011984)*** | (0.0019322)*** | (0033401)***   | (.0152483)*** | (.0007778)***     | (0.0013452)*** | (.0016623)*** | (.0054383)*** |  |
| pc cons                |               | 5.55E-07       |                | -5.59E-06     |                   | 3.16E-07       |               | -0.0000278    |  |
|                        |               | (8.43e-08)***  |                | (1.04e-06)*** |                   | (2.66e-08)***  |               | (2.37e-06)*** |  |
| $(pc cons)^2$          |               | -6.67E-14      |                | 3.09E-11      |                   | -1.21E-13      |               | 1.08E-09      |  |
|                        |               | -1.38E-13      |                | (8.03e-12)*** |                   | (1.75e-14)***  |               | (9.33e-11)*** |  |
| (pc cons) <sup>3</sup> |               | -2.98E-20      |                | -5.44E-17     |                   | 1.21E-20       |               | -9.39E-15     |  |
|                        |               | -4.64E-20      |                | (1.90e-17)*** |                   | (2.48e-21)***  |               | (9.29e-16)*** |  |
| constant               | 1.871898      | 1.996483       | 1.951418       | 1.1322        | 1.225425          | 1.379959       | 1.726858      | 1.360748      |  |
|                        | (.0109536)    | (0.0166439)    | (.0334397)     | (.1326503)    | (.0079608)        | (.0128843)     | (.0130989)    | (.0367881)    |  |
| R <sup>2</sup>         | 0.5601        | 0.5672         | 0.2671         | 0.2734        | 0.4142            | 0.4219         | 0.3543        | 0.3596        |  |
| n                      | 13,664        | 13,664         | 5,601          | 5,601         | 22,595            | 22,595         | 18,432        | 18,432        |  |
|                        | Polar         | nd 2004        | Slovenia 2004  |               | South Africa 2008 |                |               |               |  |
| ln pc cons             | -0.155549     | -0.1954166     | -0.0566805     | 0.0196097     | -0.1020406        | -0.0826984     |               |               |  |
| *                      | (.0009701)*** | (.00321)***    | (.0027971)***  | (.0138973)    | (.0015767)***     | (0.0032129)*** |               |               |  |
| pc cons                |               | 5.13E-06       |                | -8.03E-08     |                   | -0.00000157    |               |               |  |
| _                      |               | (4.75e-07)***  |                | (1.74e-08)*** |                   | (2.10e-07)***  |               |               |  |
| $(pc cons)^2$          |               | -3.69E-11      |                | 7.32E-15      |                   | 5.64E-12       |               |               |  |
|                        |               | (6.32e-12)***  |                | (2.37e-15)*** |                   | (8.05e-13)***  |               |               |  |
| $(pc cons)^3$          |               | 9.11E-17       |                | -1.98E-22     |                   | -3.94E-18      |               |               |  |
|                        |               | (1.98e-17)***  |                | (8.05e-23)**  |                   | (6.33e-19)***  |               |               |  |
| constant               | 1.731509      | 2.044694       | 0.9914122      | 0.0174445     | 1.301899          | 1.149156       |               |               |  |
|                        | (.0086655)    | (.0252243)     | (.0390546)     | (.1764177)    | (.014188)         | (.0264235)     |               |               |  |
| R <sup>2</sup>         | 0.4439        | 0.4483         | 0.0993         | 0.1104        | 0.3649            | 0.3701         |               |               |  |
| n                      | 32,214        | 32,214         | 3,725          | 3,725         | 7,291             | 7,291          |               |               |  |

A.10 LIS - Restricted and Flexible Models for Selected LIS Countries

Notes: \*\*\* p<0.001, \*\* p<0.01, \* p<0.05 Source: LIS.

|                        |             | 2007          | 2000<br>Per Capita Food Share |               | 1997        |               | 1993                  |               |
|------------------------|-------------|---------------|-------------------------------|---------------|-------------|---------------|-----------------------|---------------|
|                        | Per Capit   | ta Food Share |                               |               | Per Capit   | a Food Share  | Per Capita Food Share |               |
| ln pc cons             | -0.0824233  | 0489683       | -0.0824497                    | -0.0232033    | 0942007     | 0603283       | 0746772               | -0.0274595    |
|                        | (.00186)*** | (.0066662)*** | (.00203)***                   | (.00472)***   | (.00233)*** | (.00405)***   | (.0024128)***         | (.00565)***   |
| pc cons                |             | -6.21E-08     |                               | -2.27E-07     |             | -2.12e-07     |                       | -8.33e-07     |
|                        |             | (1.61e-08)*** |                               | (1.85e-08)*** |             | (2.20e-08)*** |                       | (8.78e-08)*** |
| $(pc cons)^2$          |             | 6.98E-15      |                               | 3.65e-14      |             | 3.31e-14      |                       | 7.12e-13      |
|                        |             | (3.78e-15)*   |                               | (4.92e-15)*** |             | (4.45e-15)*** |                       | (8.62e-14)*** |
| (pc cons) <sup>3</sup> |             | -3.03E-22     |                               | -1.47e-21     |             | -1.31e-21     |                       | -1.13e-19     |
|                        |             | (2.39e-22)    |                               | (2.41e-22)*** |             | (2.11e-22)*** |                       | (1.60e-20)*** |
| constant               | 1.637171    | 1.204434      | 1.598379                      | 0.9330899     | 1.644245    | 1.28461       | 1.370862              | 0.9112596     |
|                        | (.02432)    | (.0865131)    | (.02471)                      | (-0.0536)     | (.0267)     | (.04405)      | (.0563566)            | (.0563566)    |
| R <sup>2</sup>         | 0.1343      | 0.1378        | 0.1393                        | 0.1574        | 0.1782      | 0.1896        | 0.1184                | 0.1321        |
| n                      | 12,658      | 12,658        | 10,229                        | 10,229        | 7,536       | 7,536         | 7,136                 | 7,136         |

A.11 Indoensia Family Life Survey- Restricted and Flexible Models

Notes: \*\*\* p<0.001, \*\* p<0.01, \* p<0.05 Source: Indonesia Family Life Surveys, Rand Cooperation. Standard errors in parenthesis

### A.12 Japanese WLECs for 1955 - 1992

|      |            |             |                | Mean food |                        | "Real" pc   | Percent |
|------|------------|-------------|----------------|-----------|------------------------|-------------|---------|
| Year | Elasticity | Abs value t | R <sup>2</sup> | share     | Expenditure per capita | expenditure | growth  |
| 1955 | -0.254     | 23.881      | 0.995          | 0.374     | 5691.507431            | 32155.40921 |         |
| 1956 | -0.251     | 27.477      | 0.996          | 0.358     | 6182.102908            | 34927.13508 | 8.62%   |
| 1957 | -0.244     | 25.660      | 0.995          | 0.357     | 6516.629213            | 35609.9957  | 1.96%   |
| 1958 | -0.232     | 37.344      | 0.998          | 0.349     | 6881.838565            | 37812.29981 | 6.18%   |
| 1959 | -0.227     | 32.290      | 0.997          | 0.339     | 7298.639456            | 39666.51878 | 4.90%   |
| 1960 | -0.225     | 21.376      | 0.993          | 0.327     | 8104.816514            | 42433.59431 | 6.98%   |
| 1961 | -0.209     | 28.855      | 0.996          | 0.318     | 9077.488152            | 45161.6326  | 6.43%   |
| 1962 | -0.207     | 26.969      | 0.996          | 0.308     | 10387.52998            | 48539.8597  | 7.48%   |
| 1963 | -0.169     | 211.149     | 1.000          | 0.306     | 10847.97136            | 46960.91498 | -3.25%  |
| 1964 | -0.176     | 89.987      | 1.000          | 0.301     | 11985.81731            | 49940.90545 | 6.35%   |
| 1965 | -0.175     | 90.307      | 1.000          | 0.301     | 13181.06796            | 51690.46259 | 3.50%   |
| 1966 | -0.178     | 27.315      | 0.996          | 0.291     | 14575.42998            | 54385.93274 | 5.21%   |
| 1967 | -0.171     | 46.354      | 0.999          | 0.285     | 16216.83168            | 58333.92692 | 7.26%   |
| 1968 | -0.177     | 44.126      | 0.998          | 0.277     | 18125.18892            | 61650.30244 | 5.69%   |
| 1969 | -0.180     | 63.948      | 0.999          | 0.269     | 20496.6581             | 66118.25193 | 7.25%   |
| 1970 | -0.177     | 73.473      | 0.999          | 0.262     | 23393.07692            | 70249.48025 | 6.25%   |
| 1971 | -0.168     | 54.496      | 0.999          | 0.255     | 26113.17829            | 73975.00933 | 5.30%   |
| 1972 | -0.166     | 48.810      | 0.999          | 0.247     | 28781.86528            | 77999.63492 | 5.44%   |
| 1973 | -0.152     | 57.636      | 0.999          | 0.237     | 34329.87013            | 83324.9275  | 6.83%   |
| 1974 | -0.178     | 92.723      | 1.000          | 0.244     | 41819.58225            | 81519.6535  | -2.17%  |
| 1975 | -0.176     | 50.219      | 0.999          | 0.237     | 48868.06283            | 85135.99796 | 4.44%   |
| 1976 | -0.162     | 60.987      | 0.999          | 0.235     | 54205.5409             | 86314.55557 | 1.38%   |
| 1977 | -0.160     | 42.433      | 0.998          | 0.225     | 60062.53298            | 88587.80676 | 2.63%   |
| 1978 | -0.152     | 41.524      | 0.998          | 0.218     | 63478.27225            | 90296.26209 | 1.93%   |
| 1979 | -0.139     | 65.716      | 0.999          | 0.206     | 68309.13838            | 93702.52178 | 3.77%   |
| 1980 | -0.137     | 48.746      | 0.999          | 0.204     | 73697.91123            | 93644.10575 | -0.06%  |
| 1981 | -0.133     | 24.433      | 0.995          | 0.198     | 79238.68421            | 95930.61042 | 2.44%   |
| 1982 | -0.131     | 35.085      | 0.998          | 0.188     | 85144.73684            | 100525.073  | 4.79%   |
| 1983 | -0.120     | 37.889      | 0.998          | 0.184     | 88021.89974            | 101877.1988 | 1.35%   |
| 1984 | -0.117     | 69.588      | 0.999          | 0.180     | 91659.1029             | 103804.1935 | 1.89%   |
| 1985 | -0.114     | 79.091      | 1.000          | 0.175     | 95156.20053            | 105611.7653 | 1.74%   |
| 1986 | -0.112     | 61.665      | 0.999          | 0.172     | 97103.7037             | 107415.6014 | 1.71%   |
| 1987 | -0.109     | 46.436      | 0.999          | 0.167     | 97934.74801            | 108575.1087 | 1.08%   |
| 1988 | -0.106     | 34.885      | 0.998          | 0.163     | 102277.2727            | 112764.358  | 3.86%   |
| 1989 | -0.106     | 37.874      | 0.998          | 0.164     | 105081.7204            | 113234.6125 | 0.42%   |
| 1990 | -0.108     | 180.149     | 1.000          | 0.161     | 111571.0811            | 116706.1518 | 3.07%   |
| 1991 | -0.105     | 54.329      | 0.999          | 0.161     | 116005.3908            | 117414.3632 | 0.61%   |
| 1992 | -0.103     | 2059.757    | 1.000          | 0.157     | 120037.1274            | 119558.8918 | 1.83%   |

Notes: estimates are on average food share and total expenditure from grouped data available for the 38 years between 1955-1992. Source: Japanese historical house hold expenditure tables.

#### A.13 Poor of Rich OECD Country Food Shares

|         |             | Elasticity | Cons  | Poverty<br>rate | Food<br>share at<br>10 <sup>th</sup><br>percentile<br>(avg Q1) | Food<br>share at<br>30 <sup>th</sup><br>percentile<br>(avg Q2) | Slope             | Food share at poverty rate | Food<br>share at<br>20th<br>percentile | Predicted<br>food share at<br>60% of<br>median<br>consumption |
|---------|-------------|------------|-------|-----------------|----------------------------------------------------------------|----------------------------------------------------------------|-------------------|----------------------------|----------------------------------------|---------------------------------------------------------------|
|         |             |            |       | X               | у <sup>1</sup>                                                 | $\mathcal{Y}^2$                                                | $m=(y^1-y^2)/-20$ | $y = [m (x-10)] + y^1$     | $avg(Q_1Q_2)$                          |                                                               |
| 2009-10 | Australia   | -0.024     | 0.339 |                 | 0.183                                                          | 0.183                                                          |                   |                            | 0.183                                  | 0.182                                                         |
| 2005    | Austria     | -0.112     | 1.288 | 16.8            | 0.155                                                          | 0.159                                                          | 0.0002            | 0.156                      | 0.157                                  | 0.196                                                         |
| 2005    | Belgium     | -0.0626    | 0.782 | 22.6            | 0.161                                                          | 0.150                                                          | -0.00055          | 0.154                      | 0.156                                  | 0.169                                                         |
| 2010    | Canada      | -0.0439    | 0.606 | 13.3            | 0.152                                                          | 0.143                                                          | -0.00044          | 0.151                      | 0.148                                  | 0.144                                                         |
| 2005    | Denmark     | -0.0369    | 0.494 | 17.2            | 0.14                                                           | 0.134                                                          | -0.0003           | 0.138                      | 0.137                                  | 0.140                                                         |
| 2005    | Finland     | -0.0501    | 0.636 | 17.2            | 0.156                                                          | 0.148                                                          | -0.0004           | 0.153                      | 0.152                                  | 0.157                                                         |
| 2005    | France      | -0.0428    | 0.573 | 18.9            | 0.151                                                          | 0.145                                                          | -0.0003           | 0.148                      | 0.148                                  | 0.158                                                         |
| 2005    | Germany     | -0.064     | 0.774 | 18.4            | 0.156                                                          | 0.139                                                          | -0.00085          | 0.149                      | 0.148                                  | 0.154                                                         |
| 2005    | Greece      | -0.104     | 1.239 | 29.4            | 0.213                                                          | 0.196                                                          | -0.00085          | 0.197                      | 0.205                                  | 0.229                                                         |
| 2005    | Ireland     | -0.0774    | 0.942 | 25              | 0.18                                                           | 0.155                                                          | -0.00125          | 0.161                      | 0.168                                  | 0.166                                                         |
| 2005    | Luxembourg  | -0.0418    | 0.553 | 17.3            | 0.136                                                          | 0.119                                                          | -0.00085          | 0.130                      | 0.128                                  | 0.127                                                         |
| 2005    | Netherlands | -0.0545    | 0.668 | 16.7            | 0.119                                                          | 0.125                                                          | 0.0003            | 0.121                      | 0.122                                  | 0.139                                                         |
| 2005    | Norway      | -0.0459    | 0.591 | 16.2            | 0.133                                                          | 0.141                                                          | 0.0004            | 0.135                      | 0.137                                  | 0.141                                                         |
| 2005    | Portugal    | -0.0699    | 0.860 | 26.1            | 0.222                                                          | 0.199                                                          | -0.00115          | 0.203                      | 0.211                                  | 0.209                                                         |
| 2005    | Spain       | -0.16      | 1.808 | 23.4            | 0.254                                                          | 0.217                                                          | -0.00185          | 0.229                      | 0.236                                  | 0.268                                                         |
| 2005    | Sweden      | -0.0372    | 0.484 | 14.4            | 0.113                                                          | 0.122                                                          | 0.00045           | 0.115                      | 0.118                                  | 0.120                                                         |
| 2005    | UK          | -0.053     | 0.652 | 24.8            | 0.129                                                          | 0.116                                                          | -0.00065          | 0.119                      | 0.123                                  | 0.142                                                         |
| 2011    | USA         | -0.0299    | 0.456 | 15              | 0.161                                                          | 0.145                                                          | -0.0008           | 0.157                      | 0.153                                  | 0.153                                                         |
| median  |             |            |       |                 |                                                                |                                                                |                   | 0.151                      | 0.150                                  | 0.156                                                         |

Notes: Australia does not publish an official poverty incidence rate, so poverty incidence method is left off for Australia. Canadian data are in nominal Canadian dollars. Canadian poverty incidence rate is for 2009, not 2010, a 2010 poverty estimate was not available, and 2009 consumption data were not available. Australia food shares are calculated from average weekly consumption data, and are in nominal Australian dollars. European data currency units are purchasing power standard currency, a PPP currency unit that is equivalent across all countries, and consumption data are per household, not per capita. US in nominal US dollars.

Sources: Australia Bureau of Statistics. CANSIM. Eurostat. Bureau of Labor Statistics Consumer Expenditure Surveys. United Kingdom Office of National Statistics

#### A.14 Median Urban and Rural Food Shares

|          | Median urban food share | Median rural food share |
|----------|-------------------------|-------------------------|
| China    | 38.97                   | 43.34                   |
| India    | 51.12                   | 58                      |
| Pakistan | 50.8                    | 57.47                   |

Sources: China Statistical Yearbook, Ministry of Statistics and Programme Implementation Government of India, Government of Pakistan Statistics Division Federal Bureau of Statistics