
Working Paper 481 
April 2018

Using Supervised Learning to Select 
Audit Targets in Performance-Based 
Financing in Health: An Example 
from Zambia

Abstract

Independent verification is a critical component of  performance-based financing (PBF) in health 
care, in which facilities are offered incentives to increase the volume of  specific services but the 
same incentives may lead them to over-report. We examine alternative strategies for targeted 
sampling of  health clinics for independent verification. Specifically, we empirically compare several 
methods of  random sampling and predictive modeling on data from a Zambian PBF pilot that 
contains reported and verified performance for quantity indicators of  140 clinics. Our results 
indicate that machine learning methods, particularly Random Forest, outperform other approaches 
and can increase the cost-effectiveness of  verification activities.  
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Introduction 

Performance-based financing (PBF) is a contracting mechanism that aims to increase the 
performance and quality of service providers. PBF programs for health care services in low 
and middle-income countries typically offer financial incentives to health care facilities for 
the provision of a defined set of services, with an adjustment to the bonus payment based on 
a broad measure of quality [1]. For example, a PBF program may offer a bonus payment of 
$5 for each delivery in a clinic, and scale down the bonus if the clinics’ quality is found to be 
low. In recent years, PBF has generated substantial interest among policy-makers in low- and 
middle-income countries. Donors and international organizations are actively engaged in 
supporting countries in developing, implementing and evaluating PBF programs; for 
instance, as of 2015 a dedicated trust fund at the World Bank alone supported 36 PBF 
programs [2]. 

Regular verification by an independent third-party is a central component of PBF, as of all 
contracts that condition compensation on performance and must contend with asymmetric 
information between the provider and payer. Providers may react to the incentives not only 
by increasing performance but also by gaming, e.g., by deliberately over-reporting relative to 
their actual performance. Verification serves to establish the veracity of performance data 
(the basis of payment) and to mitigate incentives for gaming by introducing a threat of 
detection with consequent penalties for identified over-reporting.1  

Effectively targeting verification activities is an important concern for PBF programs. In 
order to balance the costs and benefits of verification activities, these programs need 
approaches that detect and deter misreporting by focusing on a sample of providers [1]. 
However, sampling schemes vary in their performance. For instance, simple random 
sampling is only effective in identifying misreporting if either the sample or the proportion 
misreporting are large, as otherwise the odds of capturing those facilities are very small. 
Sampling performance can be increased by incorporating background and contextual 
knowledge and using that information to produce models that encode the relationships in 
the data. This latter sampling problem is a natural application of machine learning, as these 
techniques use automated learning to identify data attributes that are empirically relevant 
based on past observations and can achieve highly accurate predictions. This, in turn, can 
tailor verification activities to high-risk facilities and thus lower cost and/or increase the 
precision of verification.  

Here, we compare strategies for targeted sampling of health clinics for third-party 
verification of PBF quantity indicators, with a view toward increasing the cost-effectiveness 
of these essential program activities. Specifically, we compare the performance of a random 
sampling-based approach (with and without stratification) with four common supervised-
learning based classification methods in correctly identifying health clinics that over-reported 
service volumes relative to verified data: Naïve Bayes, Logistic Regression, Support Vector 

                                                      

1 Verification also serves to help under-reporting of providers (e.g., through misunderstandings or data entry 
errors) and promote a focus on results. 
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Machines and Random Forest. We apply these methods to reported and verified data from a 
PBF program in Zambia and evaluate each method on a range of performance measures. 
Our results indicate that machine learning methods, particularly Random Forest, outperform 
other approaches and, as result, can substantially increase the cost-effectiveness of 
verification activities.  

Background 

Verification in PBF programs 

PBF offers financial incentives for increasing the quantity and/or quality of a specific set of 
health care services. Rewards for increasing quantities are generally “fee for service” 
payments, so that providers receive a bonus for every additional service they report. Many 
programs inflate or deflate the quantity bonus based on a broad index of quality. 

Verification serves to counteract the incentive to over-report and, in some cases, to fulfill the 
fiduciary responsibilities of the implementing agency. A typical PBF program has three layers 
of verification [1], [3], [4]. First, district or provincial supervisors visit all facilities on a 
monthly or quarterly basis to confirm the accuracy of the reported quantity data. Second, 
district teams visit all facilities on a quarterly basis to complete a quality assessment. Third, 
an independent third-party such as a community or non-governmental organization 
conducts quarterly counter-verification visits to a sample of facilities. Core counter-
verification activities include reconciling health service records at different points in the 
reporting chain, from individual services recorded in patient attendance books up to service 
aggregation sheets at the district level. Additional activities can include client tracer surveys 
that re-contact patients to verify the receipt of recorded service and inquire about patient 
satisfaction. Discrepancies between the reported and verified data result in penalties, such as 
deductions from the PBF bonus or exclusion from future rounds of the program. 

PBF programs vary in their approach to targeting facilities for counter-verification and the 
associated costs.2 In Burundi, the third-party agency randomly selects one district in each of 
four provinces every quarter; the sample of provinces is randomized but rotating so that all 
provinces are visited within a year [6]. The district hospital and a random sample of 25 
percent of health centers are audited in the selected districts using quantity verification, 
technical quality assessment and household surveys. Facilities with positive or negative 
discrepancies of more than 5 percent should be subject to fines. The penalty increases in the 
size of the discrepancy so that, e.g., 10 percent of the PBF bonus is withheld if the 
discrepancy is 10-20 percent. In Benin, community-based organizations are contracted to 
conduct quarterly counter-verification through unannounced visits to facilities as well as 
tracing a random sample of patients to confirm the receipt and experience of service [4].  

                                                      

2 For a series of detailed case studies of verification in PBF, see [5]. 
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Counter-verification can represent a substantial share of overall program financial costs as 
well as staff time and effort, so that improved targeting could yield important savings. 
Although there is no systematic overview of verification costs in PBF, data from individual 
programs suggests that the costs vary substantially with the program design. In Burundi in 
2011, the financial costs of these activities represent 1 percent of overall spending, not 
accounting for the time costs of district and facility staff [6]. In Benin in 2013-2014, the 
financial costs represent about 30 cents for every dollar paid to providers in bonuses, and 
there are additional time costs of district and facility staff [4]. In Argentina’s Plan Nacer, 
which incentivizes provinces rather than facilities, verification costs may be equivalent to 
about 10 percent of the maximum bonus payments.3 

Zambia’s performance-based pilot 

Zambia operated a PBF pilot project from 2012 to 2014 in an attempt to realign health 
financing towards outputs rather than inputs, and to address various health system concerns 
such as relatively low coverage of key maternal and child health services. The pilot operated 
in public health centers in 10 rural districts, covering a population of 1.5 million, or about 11 
percent of Zambia’s population [8]. It comprised two core features, financial rewards and 
equipment upgrades. Specifically, the program offered varying fee-for-service bonus 
payments for indicators measuring the quantity of nine maternal and child health (see 
Appendix Table A.1) and 10 quality domains covering aspects of both structural and process 
quality. Health centers also received emergency obstetric care equipment. In addition, 
participating health centers were subject to enhanced monitoring.  

The financial rewards from the PBF were substantial, with an individual staff’s bonus 
representing on average 10 percent of government salary [8]. An evaluation of the pilot 
based on independent population surveys found gains in selected targeted indicators, such as 
the rate of facility deliveries [9]. Other targeted indicators, especially those at already high 
levels of coverage such as ante-natal care, saw little change.  

The program extensively audited reported data through continuous internal verification and 
a one-off external process.4 Dedicated district steering committees served as internal 
verifiers, reconciling the facility reported information which served as the basis for incentive 
payments with the paper based evidence of services provided at the facility. An independent 
third party verified reports by primary health clinics on a sample basis in a one-off exercise 
after two years of program operation. The total cost of this one-off external verification 

                                                      

3 A calculation for Argentina’s Plan Nacer suggests that third party verification contracts cost the equivalent of 
6.7 percent of the program’s capitation payments that, in turn, represent 60 percent of allowable transfers under 
Plan Nacer (the remaining 40 percent consist of the PBF component) [7]. This suggests that verification costs 
may reach 10 percent of overall allowed disbursements. 
4 This external verification was only conducted once over the life of the two-year project while the design plans 
originally called for this exercise to be conducted every two quarters. 
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came to 1.5 percent of the total US$ 15 million spent on the pilot project. The cost of 
internal verification activities was assuredly greater given the scale of activities involved. 

Conceptual framework 

Conceptually, the primary fiduciary objective of counter-verification is to reduce or eliminate 
over-reporting while minimizing verification costs. The costs of this scheme can be modeled 
as a simple cost function where the total cost, tc, is a linear function of several parameters: 

𝑡𝑡𝑡𝑡 = 𝑛𝑛[𝑝𝑝(𝑚𝑚𝑡𝑡 − 𝑠𝑠) + (1 − 𝑝𝑝)𝑚𝑚𝑡𝑡] + 𝑓𝑓𝑡𝑡 

n is the total number of facilities selected into the verification sample. p is the proportion of 
sampled facilities found to have misreported in a given time period (e.g. a quarter). mc is the 
marginal cost of verification at a facility, which is assumed to be the same regardless of 
whether the facility is a mis-reporter or not. s is the financial sanction that the over-reporter 
must pay to the health system, and fc is the fixed cost of verification activities that are 
constant across time periods. 

The financial efficiency gains from improving the accuracy of predicting what facilities are 
over-reporting (i.e. increasing p) while keeping n constant arises through two channels: (1) an 
increase in p directly leads to a lower cost of the verification by increasing the amount earned 
back through sanction payments, (2) an increase in p may have a dynamic effect in so far as 
facilities identified as over-reporters may be less likely to over-report in the future. If 
accurate prediction increases this deterrence effect, then future verification efforts can be 
reduced in size as the incidence of future over-reporting declines.  

Data and methods 

Data from Zambia’s PBF pilot 

We use operational data from the Zambia pilot project to evaluate the performance of 
different classification methods. Although a simulated dataset would have been sufficient for 
this assessment, the Zambia data are realistic with regards to data attributes and parameters. 

Specifically, we combine data from facility reports and a dedicated facility survey that was 
designed to reproduce the stipulated external verification activities in a sample of facilities. 
The data cover 105 primary health care centers in the 10 PBF pilot districts and 35 centers in 
another 8 non-pilot districts, for a total of 140 facilities. The population of facilities were 
stratified by district and then selected on a proportional-to-size basis with respect to the 
facility catchment area. Reported performance stems from the Health Information 
Aggregation (HIA) 2 forms in which health facilities summarized services provided for each 
indicator. Verification data were collected on the complete set of nine incentivized indicators 
and cover every calendar month of 2013. These data are derived from tally sheets, activity 
sheets and registers, as these records indicate the individual services delivered to a specific 
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client. These data sources contain the date of the service, client register number, and other 
information and were used to check errors relating to summing, recording and data entry. 

Our focus is on whether or not a facility over-reported. Our primary measure of interest is a 
binary measure of over-reporting relative to the verified data. The measure is equal to one 
when the difference in the bonus payment based on the reported vs. verified data represents 
10 percent or more of the reported value. We calculate this measure in two steps.5 First, for 
each facility in each quarter, we calculate the product of the quantity and price (reward) for 
indicator and then sum these products to obtain the total bonus payment based on 
(separately) the reported and verified data. Second, we calculate the difference in the bonus 
payments and evaluate whether it is substantively large. We classify a facilities’ quarterly 
report as over-reported if the bonus calculated on the reported data exceeds the bonus 
calculated on the verified data by 10 percent or more. Our label of “over-reporting” 
emphasizes that a regulator would primarily be concerned about cases when a facility’s 
report exceed the actual volume of services delivered, because of the associated over-
payment. The cutoff of 10 percent allows for possible leniency for smaller mismatches and 
generates sufficient variation in the data; it also corresponds to thresholds used in at least 
some operational PBF programs. 

Tables 1 and 2 illustrate the structure of the Zambia data over the four quarters of 2013. 15-
23 percent of facilities over-report in a given quarter. There is a strong correlation of over-
reporting over time: of the facilities that over-report in quarter 1, 58 percent also over-report 
in quarter 2, and 42 percent also over-report in quarters 3 and 4. Table 2 shows that about 
58 percent of facilities never over-report and only 4 percent over-report in all four quarters. 

Classification methods 

We evaluate the performance of sampling-based approaches in classifying a facilities’ 
quarterly report as over-reporting, and compare their performance to four alternative 
approaches including supervised machine learning: Naïve Bayes, Logistic Regression, 
Support Vector Machines and Random Forest. In this section we briefly describe these 
approaches and considerations for their use. 

Sampling-based approaches 

Random sampling is the current default selection method for counter-verification in many 
PBF programs [1].  

In this study, we examine how well four approaches to random sampling perform with 
regards to identifying clinics that over-report. First, we use simple random sampling to 

                                                      

5 The calculations for the quarterly value are first on the month-level and then summed. Both data sources have 
some missing values that we fill where possible, e.g., we calculate a single month’s missing value as the difference 
between the quantities for the quarter and the other two months. When calculating the bonus payment, we only 
consider indicator-months that are available for both the reported and verified data, i.e., we ensure that the bases 
for the calculations are identical. 
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determine the probability of an over-reported event, wherein 50 percent of the clinics are 
chosen repeatedly at random. Second, we stratify the sample by district and then use simple 
random sampling to select 50 percent of clinics within these strata. This approach ensures 
that counter-verification takes place in all districts. Third, we leverage knowledge of what 
clinics previously over-reported. Specifically, we use simple-random sampling to draw half 
the audit sample from those clinics that over-reported in the immediate prior quarter, and 
simple random sampling to draw from the remaining clinics. The overall sample size is 20 
percent of all clinics, i.e., 28 clinics. Fourth, we select up to 28 clinics that were prior 
offenders. If the number of prior offenders is greater than 28, we use simple-random 
sampling to select the target number. If the number is less than 28, we randomly sampled 
from the remaining facilities to achieve the target number.  

We report the accuracy of the sampling-based approaches as averages of 1000 independent 
sampling iterations without replacement. 

Supervised learning 

Supervised learning are a class of machine learning algorithms that use labeled examples to 
infer a relationship between input and output variables, and then use that inferred 
relationship to classify new examples. The underlying basis of these algorithms is to 
generalize from training data to prediction of class labels of unseen instances from a test set. 
In practice, it is important that the test set of unseen instances be distinct from the training 
corpus. If training examples were reused during testing, then a model that simply memorized 
the training data, without learning to generalize to new examples, would receive misleadingly 
high scores. 

In the context of verification in PBF, these training data are a subset of facility-specific data 
points (input) that contain a binary indicator for whether or not a facility over-reported 
(output). The algorithm learns from these data which facilities are at risk of over-reporting, 
and applies this learning to predict this risk for other facilities not included in the training 
data.  

For the below analyses, we used as input features the reported and verified values for the 
nine quantity measures that were rewarded in the RBF program, along with the district 
identifier and a categorical variable indicating the treatment arm from a related audit 
experiment.6 In a supplemental analysis, we expanded this set of 22 covariates to include an 
additional 6 facility-level covariates (see below). 

Next, we describe briefly each of the four supervised learning approaches used here, their 
strengths and weaknesses, and suggest ways in which a practitioner might ascertain the 
method best suited for the classification problem at hand.  

                                                      

6 The audit experiment randomly varied the probability of audit (10, 30 or 100 percent) in the RBF areas while 
clinics in non-RBF areas had a zero percent probability of audit. Facilities were told what their specific audit 
probability was. 
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Naïve Bayes is a simple and efficient classification technique that involves the application of 
Bayes theorem, wherein the probability of a feature is determined using prior knowledge of 
conditions that might be related to that feature [10], [11]. This algorithm calculates the 
probability of an input (or specific set of predictive features) belonging to each class (labeled 
output), and then chooses the class with the highest score. It assumes strong independence 
between these predictive features, i.e. correlations between features, if any, are disregarded, 
and all features contribute independently to the probability of the class variable.  

Logistic Regression uses a logistic function at its core to estimate a relation between the 
binary classification and its possible predictors [12], [13]. Unlike standard regression, logistic 
regression does not try to predict the value of a numeric variable given a set of inputs, rather, 
the output is a probability of a given input belonging to a certain class. The central premise 
of logistic regression is the assumption that the input space can be partitioned by a linear 
boundary, separating the data into two classes.  

The difference in learning mechanisms between Logistic Regression and Naïve Bayes can be 
subtle. Naïve Bayes attempts to model both inputs and outputs, by estimating the joint 
probability of a set of features and output label from the training data, and is termed as a 
generative classifier. Logistic Regression, described as a discriminative classifier, attempts to 
infer the output from input data: estimating output probabilities from the training data by 
minimizing error [14]. 

A support vector machine (SVM) is a discriminative non-probabilistic classifier formally 
defined by a hyperplane that maximizes the separation between the two classes [15]. Given 
labeled training data, this non-parametric algorithm outputs an optimal hyperplane that best 
separates the data belonging to the different categories, for instance, in two-dimensions the 
hyperplane separating data from different categories would be a line, in three-dimensions, a 
plane, and so on. To determine the optimal hyperplane or decision boundary between the 
categories, the SVM algorithm maximizes the margins from both categories, such that the 
distance from the boundary to the nearest data point on either side is the largest. Once an 
optimal hyperplane is found using labeled training data, features from the test set can then 
be classified into their respective categories by determining whether they fall on one side of 
the boundary or the other.  

Random forests are ensemble-based classification algorithms [16], [17]. The main principle 
behind ensemble based methods is that a group of weak learners can be integrated during 
training time to form a strong learner. 

Random forests are based on decision trees, that is, a graph that uses a branching method to 
illustrate every possible outcome of a decision. Each internal node represents questioning an 
attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the 
outcome of that question, and the leaf nodes of the tree signify the class labels. The random 
forest starts with a decision tree, wherein the input entered at the top traverses down a tree 
structure to the leaves to get binned into smaller sets. 
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Random forests are a way of averaging multiple decision trees, trained on different parts or 
features of the same training set, with the goal of reducing variance. Individually, predictions 
made by decision trees may not be accurate, but combined together on different features, 
they achieve higher predictive power. In ensemble terms, the decision tree corresponds to 
the weak learner, a multitude of which form a strong learner in the shape of a random forest.  

There are six factors to consider when choosing an appropriate machine learning technique 
for an application like counter-verification in PBF. First and foremost being the size of the 
data set used for training the classifier. Second, whether there is a need to learn interactions 
between the various features or whether can they be treated as independent variables. Third, 
whether additional training data may become available in the future and would need to be 
easily incorporated into the model. Fourth, whether the data is non-parametric and not 
linearly separable. Fifth, whether overfitting of the model to the training data is expected to 
be a problem. Finally, whether there are any requirements in terms of speed, performance 
and memory usage. 

For small training sets, high bias/low variance classifiers (e.g. Naïve Bayes) have an 
advantage over low bias/high variance classifiers (e.g. Logistic Regression), since the latter 
can have a tendency to overfit [18]. However, low bias/high variance classifiers perform 
increasingly better as the training set grows (they have lower asymptotic error), since high 
bias classifiers are not powerful enough to provide accurate models. Logistic Regression can 
work quite well as long as the data features are roughly linear and the problem linearly 
separable. It is also relatively robust to noise, can avoid overfitting and allows updates to the 
model with new data. A final advantage of Logistic Regression is that the output can be 
interpreted as a probability and can be used for ranking instead of classification [19], [20]. 

SVMs are superior to Logistic Regression for problems that are not linearly separable, in 
which case a SVM with a non-linear kernel would perform well. SVMs provide high accuracy 
and useful theoretical guarantees against overfitting, and are popular algorithms where high-
dimensional spaces are the norm. However, they can be memory intensive, hard to interpret 
and challenging to tune for optimal performance in most industry-scale applications [21]. 
While the size of the dataset used in this study is not of immediate concern for the 
application of SVM, scaling of this approach to larger datasets spanning an entire country (or 
several countries) that might include additional possible correlated features, and increased 
training size, can negatively affect performance by increasing variance of the prediction, thus 
diluting the true signal.  

Finally, tree ensemble-based learning methods such as Random Forest have distinct 
advantages over both Logistic Regression and SVM. A major advantage over Logistic 
Regression is that they do not expect linear features or even features that interact linearly 
[22]. The advantage over SVM is that, because of how they are constructed (using bagging or 
boosting), these algorithms handle high dimensional spaces as well as large number of 
training examples. It captures the variance of several input variables at the same time and 
enables high number of observations to participate in the prediction. Random Forest 
methods are fast and scalable unlike SVMs, do not suffer from overfitting and require no 
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tuning of parameters [23], [24], making them a—prima facie—ideal choice of a classification 
algorithm for our application. 

Performance metrics 

We assess the performance of the classification methods with five performance metrics: 
prediction accuracy, F-score, area under the ROC [25], average precision rate, and root mean 
squared error (RMSE). 

Prediction accuracy is the ratio of the number of correct predictions made in relation to the 
total number of predictions. Classification accuracy alone is typically not sufficient to 
evaluate the robustness of the model’s predictive capabilities. We therefore also utilize the 
other performance measures to evaluate the algorithms. 

Metrics such as accuracy or RMSE have a range of [0, 1]. In the case of accuracy, higher 
values are better. However, low RMSE values indicate better performance. Metrics such as 
ROC area have baseline rates that are independent of the data, while others such as accuracy 
have baseline rates that depend on the data. Therefore, to allow comparisons across metrics 
for the various models tested, we scaled the performance for each metric from [0, 1], where 
0 is baseline performance and 1 is best observed performance as a proxy for optimality. We 
also report on the prediction accuracy of simple random sampling for different sample sizes 
and with or without stratification. 

Analysis 

We compare four supervised learning algorithms (Naïve Bayes, Logistic Regression, Support 
Vector Machines and Random Forest) on five performance metrics (prediction accuracy, F-
score, area under the ROC, average precision rate, and root mean squared error).  

We used 10-fold cross-validation on the Q1 dataset (140 cases), in which the original sample 
is randomly partitioned into 10 equal size subsamples. Of the 10 subsamples, a single 
subsample is retained as the validation data for testing the model, and the remaining 9 
subsamples are used as training data. The cross-validation process is then repeated 10 times, 
with each of the 10 subsamples used exactly once as the validation data. We then averaged 
the 10 results to produce a single estimation. Given that the size of our training dataset is 
relatively small, the advantage of this method is that all observations are used for both 
training and validation, and each observation is used for validation exactly once. Similarly, we 
report the accuracy of the sampling-based approaches as the averages of 10 independent 
sampling iterations. 

For each metric we found the best parameter settings for each algorithm using the validation 
data set aside by cross-validation, then report that model’s normalized score on the test set. 
Following training, we then used the estimated models to further classify data from Q2-Q4, 
i.e., we assess the models’ prediction accuracy in subsequent periods.  
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Results 

Figure 1 shows the ROC curves for random forest, logistic regression, support vector 
machine and Naïve Bayes classifiers using cross-validation with training data. 

Table 3 shows the normalized scores for each supervised learning algorithm across five 
performance metrics. Each entry in the table averages these scores across the ten trials. 
Random Forest outperforms all other approaches on these five performance metrics. SVM 
also performs relatively better than Naïve Bayes and LR on most measures except RMSE, 
while LR performs marginally better than Naïve Bayes on all metrics. 

Table 4 shows the prediction accuracy of the four supervised learning algorithms and the 
four sampling approaches. As in Table 3, Random Forest performs best with almost 87 
percent prediction accuracy in a single cross-section and 77-89 percent accuracy in the time 
series. SVM also performs well relative to other methods but has substantively lower 
performance than Random Forests at 64 percent in the cross-section and 49-58 percent in 
the time-series. The sampling methods perform worse than most of the supervised learning 
approaches (except logistic regression): Simple random sampling (SRS) and SRS with district 
stratification have a low predictive accuracy. Sampling using historical information about 
over-reporting performs better, reflecting the correlation of over-reporting over time shown 
in Table 1. Revisiting the top-offenders further boosts the prediction accuracy. Note that 
Table 1 shows the accuracy of revisiting all offenders of a previous quarter, without 
sampling. Of those facilities that over-reported in the first quarter, 57.7 percent, 42.3 percent 
and 42.3 percent also over-report in quarters 2-4, respectively.  

For each of the supervised learning algorithms, we thoroughly explored the parameter space 
related to the classification methods. For instance, we performed Naïve Bayes modeling as 
single normal, with kernel estimation, or discretizing them with supervised discretization. In 
Logistic Regression, we tested both un-regularized and regularized models, varying the ridge 
parameter by a factor of 10 from 10^-5 to 10^-2. For SVMs, we used the following kernels: 
linear, polynomial degree 2 and 3, radial with width ranging from 10^-3 to 1 by a factor of 
10. For Random Forest, we used the Breiman-Cutler version with btrees of sizes (50, 100, 
200, 500) and size of feature set considered at each split from 1-9. Appendix Figure A1 
shows the tuning of the Random Forest mtry parameter (number of variables randomly 
sampled at each split) for a range of ntree (number of trees to grow). The most accurate 
values for ntree and mtry were 200 and 3, respectively, with an accuracy of 84.4 percent. 

We also examined whether additional covariates would improve the predictive accuracy of 
the supervised learning algorithms. Appendix Table A2 shows the predictive accuracy when 
also accounting for the facility type, managing authority, location, size of the catchment 
population, and number of established and filled staff posts. Incorporating these covariates 
slightly reduced the performance for all algorithms. Appendix Figures A2 and A3 show the 
importance of covariates in the Random Forest algorithm and indicate that these additional 
covariates contribute little to the predictive accuracy.  
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Discussion 

Verification of reported performance is a crucial issue in PBF in health, given that the 
payment incentives may not only encourage increased performance but also over-reporting. 
Independent verification serves to deter over-reporting and to ensure that payments reflect 
actual performance. 

We described several approaches to identify the set of health clinics that should be audited, 
and tested performance of these approaches on self-reported and verified data for 140 clinics 
in Zambia. Our results indicate that sampling-based approaches do not perform well even 
with large sample sizes. Algorithm-based supervised learning methods perform substantially 
better, especially Random Forest which—in our data—has a prediction accuracy that 
remains high even over time. The finding that Random Forest outperforms a regression 
approach such as Logistic Regression indicates that over-reporting is a highly non-linear 
function of covariates—information commonly observed in administrative data or facility 
surveys—and consequently predictions from traditional regression analysis will not be 
particularly accurate. 

These high-performing methods are feasible in operational PBF settings: they use existing 
data, can be updated as new information becomes available. Indeed, unlike sampling-based 
approaches, the supervised learning methods are likely to further improve as new and 
additional data becomes available. These methods can also be made user friendly and 
automated, by drawing data from existing data systems, such as the electronic District Health 
Information System (DHIS-2) or dedicated PBF data portals, and outputting the list of 
facilities that to be visited by verification teams.  

Improving the prediction accuracy yields several benefits to PBF programs. It leads to clear 
cost savings as, on the margin, each detected case will result in a penalty that helps defray the 
costs of the verification activities.7 Methods with high accuracy may also be more effective at 
deterring over-reporting over time. They will also reduce the time that staff of correctly 
reporting clinics spend (unnecessarily) to support verification activities. Finally, better 
detection may also be perceived as more fair and improve the acceptance of PBF among the 
clinics and policy-makers. 

There are several directions for future research. First, the various approaches could be tested 
on different data, either from other real-life PBF program or simulated data, and with 
different definitions of what constitutes “over-reporting.” Our findings are applicable to a 
particular setting and program design, and the performance of the methods may vary across 
contexts. Second, there may be other approaches that could perform well but that we did 
not test in this study. For instance, sampling-based approaches could use more productive 
strata than districts, e.g., strata constructed using machine learning or principal-component 
analysis of covariates that are predictive of over-reporting. Fourth, future testing or 

                                                      

7 The average cost of verification was about $1,600 per clinic. The marginal cost may have been around $800 per 
clinic. 
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implementations could use additional covariates to improve the accuracy of the supervised 
learning methods, e.g., district and facility characteristics such as size, staffing and 
remoteness. Some of these data are readily available in settings with electronic health 
management information systems. As our example shows, adding covariates is not always an 
improvement and, indeed, can worsen predictive accuracy (see Appendix). Finally, additional 
research may be required on the behavioral response of clinics to the performance of the 
verification scheme and how the scheme could be adapted over time to address these 
responses as well as general improvements in reporting accuracy. We relied on quarter-1 data 
to predict over-reporting in subsequent quarters, so that any response after quarter 1 would 
not impact the predictions of the algorithm-based models. However, behavioral responses 
could affect the data basis for models built on later data; the sampling-based models are 
immune to this concern. For this reason, a hybrid approach may involve periodic retraining 
of the learning algorithm on a new random sample drawn from the population of 
participating clinics. 

Overall our findings suggest that supervised learning approaches, such as Random Forest, 
could substantially improve the prediction accuracy of counter-verification in PBF and thus 
increase the cost-effectiveness of verification. These methods are operationally feasible, 
especially in settings with electronic routine reporting systems. 
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Recommendations for practitioners 

Training of the algorithm: 

• Create an initial training dataset for the supervised learning algorithm that contains 
facility-reported and verified data for a subset of the health facilities, e.g., for a 10 
percent random sample of all participating facilities.  

• Define a threshold for over-reporting that is considered unacceptable. For example, 
we used a discrepancy of 10 percent or more of the self-reported and verified data: 
facilities with a larger discrepancy are classified as over-reporting. 

• Select an algorithm that is appropriate for the specific data and setting (see above for 
a brief list of criteria to that can inform this choice) 

• The algorithm will learn patterns that are associated with over-reporting in the 
training data. 

Applying the algorithm: 

• Apply the trained algorithm to the reported data from all facilities in the program. 

• The algorithm predicts which facilities are likely to over-report. 

• Use the predictions to inform audit activities, e.g., send audit teams to verify data at 
those facilities that have the highest risk of over-reporting. 

Continued use of the algorithm: 

• Occasionally refresh the training sample, i.e., collect a new training dataset from all 
participating facilities, for instance, using random sampling. Then re-apply the 
algorithm. 
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Figures and tables 

Figure 1: ROC curves for random forest, logistic regression, support vector machine 
and naïve bayes classifiers using cross-validation with training data. 
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Table 1: Overview of data from Zambia pilot 

  Quarter 

  1 2 3 4 

Percent over-reporting 18.6 15 22.9 20 

Count 140 140 140 140 
          

Percent of facilities over-reporting if also over-reporting in… 

Quarter 1 100 57.7 42.3 42.3 

Quarter 2 71.4 100 66.7 47.6 

Quarter 3 34.4 43.8 100 43.8 

Quarter 4 39.3 35.7 50 100 
 

Table 2: Distribution of facilities that over-report 

  N Percent 

Never 81 57.9 

One quarter 32 22.9 

Two quarters 12 8.6 

Three quarters 9 6.4 

All four quarters 6 4.3 
 

Table 3: Normalized scores of learning algorithms across five performance metrics 

Model Accuracy F-score ROC area 
Avg 

precision 
RMSE 

Logistic Regression 0.584 0.509 0.728 0.627 0.603 

Naïve Bayes 0.552 0.425 0.583 0.523 0.488 

SVM 0.647 0.651 0.783 0.691 0.501 

Random Forest 0.866 0.821 0.901 0.896 0.817 

Note: scores normalized to range from 0 (worst) to 1 (best). 
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Table 4: Prediction accuracy performance of different approaches 

Note: Accuracy is calculated as average of 1000 independent sampling without replacement iterations for SRS, 
and 10-fold cross-validation for supervised learning. 

 

 

 

Approach 
Prediction of over-reported event 

Q1 Q2  Q3  Q4  
Sampling approaches 
SRS  18.77% 14.98% 22.56% 20.04% 
SRS with district stratification 18.83% 15.21% 23.22% 19.9% 
     
SRS of offenders & non-offenders - 34.5% 36.5% 27.87% 
SRS of only offenders - 44.5% 42.19% 38.81% 
Supervised learning 
Logistic Regression 58.42% 32.84% 31.28% 34.76% 
Naïve Bayes 55.24% 46.15% 32.05% 41.3% 
SVM 64.75% 58.02% 49% 52.26% 
Random Forest 86.6% 89.18% 84.92% 77.31% 
Random Forest with district 87.84% 86.19% 81.99% 76.96% 
Random Forest with intervention 85.08%  82.29% 77.83% 73.08% 
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Appendix 

Figure A1: Tuning of random forest mtry parameter (number of variables randomly 
sampled at each split) for a range of ntree (number of trees to grow).  
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Figure A2. Feature importance criteria for random forest classification with basic set 
of variables 

 

Note: “ts” refers to tally sheet; hia refers to Health Information Aggregation 2 forms. 
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Figure A3. Feature importance criteria for random forest classification with 
expanded set of variables 

 

Note: “ts” refers to tally sheet; hia refers to Health Information Aggregation 2 forms. 

Q6=type of facility (7 levels plus “other,” from central hospital to rural health post) 

Q7=managing authority (government, mission/FBO, private, military, other) 

Q8=location (rural, peri-urban, urban) 

Q9=size of catchment population 

est=total number of established staff posts 

fill=total number of filled staff posts 
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Table A1. Rewarded indicators in Zambia’s 2012-2014 pilot PBF  

# Indicator Fee (Kwacha) Fee (USD*) 

1 Curative Consultation 1,000 0.20 

2 Institutional Deliveries by Skilled Birth Attendant 32,000  6.40 

3 ANC prenatal and follow up visits 8,000  1.60 

4 Postnatal visit 16,500  3.30 

5 Full immunization of children under 1 11,500  2.30 

6 Pregnant women receiving 3 doses of malaria IPT 8,000  1.60 

7 FP users of modern methods at the end of the month 3,000 0.60 

8 Pregnant women counselled and tested for HIV 9,000 1.80 

9 HIV Exposed Babies administered with Niverapine and AZT 10,000 2.00 

* Approximate value. Source: [8]. 

 

Table A2. Prediction accuracy performance of different approaches with expanded 
set of variables 

 

 

 

 

 

 

 

 

Approach 
Prediction of over-reported event 

Q1 Q2 Q3 Q4 

Logistic Regression 49.31% 28.64% 26.49% 29.14% 

Naïve Bayes 49.97% 40.58% 33.16% 38.68% 

SVM 58.38% 52.97% 45.74% 49.82% 

Random Forest 82.72% 79.38% 74.26% 71.16% 
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