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Abstract

This paper describes the creation of  a database providing estimated greenhouse gas (GHG) footprints 
for 6 million US households over the period 2008-2012. The database allows analysis of  footprints 
for 52 types of  consumption (e.g. electricity, gasoline, apparel, beef, air travel, etc.) within and across 
geographic regions as small as individual census tracts. Potential research applications with respect to 
carbon pricing and tax policy are discussed. Preliminary analysis reveals:

• The top 10% of  US polluters are responsible for 25% of  the country’s GHG footprint. The least-
polluting 40% of  the population accounts for only 20% of  the total. The average GHG footprint 
of  individuals in the top 2% of  the income distribution is more than four times that of  those in the 
bottom quintile.

• The highest GHG footprints are found in America’s suburbs, where relatively inefficient housing 
and transport converge with higher incomes. Rural areas exhibit moderate GHG footprints. High-
density urban areas generally exhibit the lowest GHG footprints, but location-specific results are 
highly dependent on income.

• Residents of  Republican-held congressional districts have slightly higher average GHG footprints 
than those in Democratic districts – but the difference is small (21.8 tCO2e/person/year in Republican 
districts; 20.6 in Democratic). There is little relationship between the strength of  a district’s party 
affiliation and average GHG footprint.
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Introduction 

Climate-changing greenhouse gas (GHG) emissions ultimately result from the demand for 

goods and services. In theory, almost all anthropogenic GHG emissions can be traced back 

to consumption on the part of households.1 This includes “direct” emissions due to the 

consumption of energy (e.g. electricity to light or cool a home, gasoline for personal 

automobiles, natural gas for cooking and residential heating, etc.) and “indirect” emissions 

released during the production or manufacture of food, apparel, air travel, services, etc. 

So-called “consumption-based” emissions differ from production-related or territorial 

emissions. In the case of consumption-based emissions, the location at which GHG’s are 

released into the atmosphere – whether a power plant in Ohio or a factory in China – is 

irrelevant. The goal is to trace emissions back to the household consumption choices that 

ultimately led to their production. See Wiedmann (2009) for a review of methodological 

issues in consumption-based emissions accounting. 

Consumption-based GHG “footprints” provide a more relevant metric for assigning 

responsibility for climate change across societies and individuals. They are also a necessary 

input to the analysis of household-level effects (i.e. “incidence”) of potential carbon pricing 

policy. This paper does not attempt to estimate the incidence of a carbon tax on U.S. 

households; see Williams III et al. (2014) for an example of such work. However, the data 

developed here are central to such efforts. The implications and applications of this database 

with respect to carbon pricing policy are discussed later. 

The objective of this study is to create a high-resolution, household-level database of U.S. 

GHG footprints to enable future analysis across any relevant sectoral, demographic, or 

spatial dimension. While previous work has modeled average household footprints for 

specific geographic entities (Jones and Kamen 2014), this study develops GHG footprints 

for all individual households in a large, nationally-representative sample. Further, while the 

methodology used here shares basic features with previous research in this vein (e.g. Burtraw 

et al. 2009, Hassett et al. 2009, Grainger and Kolstad 2010), new data and techniques 

introduced here offer significant improvements. 

 

                                                           
1 Some GHG emissions are attributable to consumption by governments (e.g. public administration, 

military, etc.) and account for about 8% of the total U.S. GHG footprint (Andrew and Peters 2013). There is no 
obvious way to allocate these emissions to individual households. This analysis focuses on the remaining 92% of 
emissions that can be attributed to specific consumption choices on the part of households. 
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Data and Methodology 

Household level, consumption-based GHG footprints are most readily estimated from 

expenditure data. If expenditures for various goods and services are known, they can be 

converted to GHG emissions using emission factors for specific types of consumption (e.g. 

GHG per dollar of air travel expenditure). This study proceeds in two steps: 1) creation of a 

large, household-level expenditure database and 2) conversion of those expenditures to 

GHG footprints. Each step is explained below. 

Simulation of household expenditures 

The Bureau of Labor Statistic’s Consumer Expenditure Survey (CEX) uses interviews and 

diaries to collect expenditure, income, and demographic data for a representative sample of 

American households.2 This study utilizes all available CEX data over the period 2008-2012 

to compute inflation-adjusted (real) annual expenditures for 52 spending categories across 

23,552 unique households. The 52 expenditure variables are listed in Table 1. 

Table 1: Household expenditure variables constructed from CEX survey data 

Expenditure variable 

Air travel 

Alcoholic beverages 

Apparel 

Beef 

Cash contributions 

Cereals and baked goods 

Dairy 

Drugs 

Education 

Electricity 

Fees and admissions 

Food away from home 

Fruits and vegetables 

Furniture 

Gasoline 

Health insurance 

Heating oil 

Home insurance 

Home maintenance and repairs 

Household textiles 

Laundry and cleaning supplies 

                                                           
2 http://www.bls.gov/cex/ 
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LPG 

Major appliances 

Medical services 

Medical supplies 

Miscellaneous household equipment 

Mortgage interest 

Natural gas 

New car and truck net outlay 

Nonalcoholic beverages 

Other entertainment supplies, equipment, and services 

Other food at home 

Other fuels 

Other household expenses 

Other shelter 

Other vehicle net outlay 

Personal care products and services 

Personal insurance and pensions 

Personal services 

Pets, toys, and playground equipment 

Pork 

Poultry and fish 

Public transportation 

Rent 

Small appliances, miscellaneous house wares 

Telephone services 

Television, radios, sound equipment 

Tobacco products and smoking supplies 

Used car and truck net outlay 

Vehicle maintenance and repairs 

Vehicle rental, leases, licenses, other charges 

Water and other public services 

 

Although the most exhaustive survey of its kind, the CEX is not large enough to allow valid 

analysis of household expenditures at high spatial resolution. In order to analyze expenditure 

patterns at higher spatial resolution, it is necessary to use the CEX data to impute or (more 

accurately, in this particular case) simulate expenditures for a larger sample of households. 

The Census Bureau’s American Community Survey (ACS) is the largest ongoing household 

survey in the United States.3 The ACS provides information on household demographics, 

sources of income, and some expenditures (e.g. cost of housing). The Public Use Microdata 

Sample (PUMS) is a representative subsample of the complete ACS made public for research 

purposes. To ensure confidentiality, the PUMS identifies the location of individual 

                                                           
3 In a given 5-year period, the ACS obtains completed surveys from about 7.5% of all U.S. households. 

Surveys are sent out monthly; responses are provided by mail, telephone, and in-person interview 
(http://www.census.gov/acs/www/). 
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households by Public Use Microdata Area (PUMA), of which there are more than 2,000 

nationwide. This study uses the 2008-2012 5-year PUMS release containing data for 6 million 

households or ~5% of the total population.4 

It is possible to identify or construct 50 household variables common to both the CEX and 

PUMS. It is also possible to assign 8 third-party variables to households in each survey based 

on geographic location: population density, heating and cooling degree-days5, and local and 

state fuel prices.6 Table 2 provides a complete list.7 

Table 2: Household variables that can be derived for both the CEX and ACS surveys 

Household characteristics 

Number of people 

Age of primary earner or householder 

Race of primary earner or householder 

Sex of primary earner or householder 

Employment status of primary earner or householder 

Educational attainment of primary earner or householder 

Occupation of primary earner or householder 

Number of adults 18 or older 

Number of adults 18 to 44 years old 

Number of adults 45 to 64 years old 

Number of adults more than 64 years old 

Number of children under 18 

Number of children less than 6 years old 

Number of children 6 to 12 years old 

Number of children 13 to 17 years old 

Number of college students 

Number of people in labor force 

Number of unemployed workers 

Number of active military 

Average age of adults 

Average age of children 

Average age of workers 

Average years of education completed by adults 

Average hours worked per week per worker (last 12 months) 

                                                           
4 The analysis here is limited to the non-group quarter population and excludes individuals housed in 

correctional facilities, juvenile facilities, nursing homes, and health care facilities. 
5 Degree-days data from NOAA 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/) 
6 State-level fuel prices from EIA SEDS database (http://www.eia.gov/state/seds/) 
7 The aforementioned third-party variables are naturally assigned to PUMS households using the designated 

PUMA. Since the CEX does not reveal household location with precision, it is necessary to assign households to 
a PUMA on the basis of both location and household characteristics. A series of state-specific boosted regression 
tree classification models are fit to the PUMS data, predicting PUMA assignment using household income, race, 
education, housing status/cost, property value, etc. along with the geographic information that is provided in the 
CEX. In cases where the state is unidentified in the CEX, models specific to the Census region are used. Having 
assigned the most likely PUMA to each CEX household, it is possible to attach the third-party variables. 
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Family type (couple both in labor force, single person not in labor force, etc.) 

Food stamp recipient flag 

Number of vehicles 

Household income 

Total household income 

Wages and salary 

Self-employment net income 

Social Security, Railroad Retirement, and Supplemental Security Income 

Retirement income (pensions, IRA, etc.) 

Interest, dividend, and rental income 

Welfare or public assistance income 

Other income (unemployment, child support, etc.) 

Housing situation 

Housing status (rent, own, etc.) 

Housing type (single family home, apartment building, etc.) 

Number of rooms 

Housing age 

Heating fuel 

Housing tenure (years; owned housing only) 

Rent expenditure 

Mortgage expenditure 

Homeowners insurance 

Property tax 

Property value (self-reported; owned housing only) 

Flags (4) indicating if electricity, natural gas, heating fuel, or water included in rent 

Third-party variables 

Population density 

Heating degree-days (monthly average; last 12 months) 

Cooling degree-days (monthly average; last 12 months) 

Local electricity price (average; last 12 months) 

State gasoline price (average; last 12 months) 

State natural gas price (average; last 12 months) 

State heating oil price (average; last 12 months) 

State LPG price (average; last 12 months) 

 

The goal is to use the common variables (Table 2) to simulate a valid value for each CEX 

expenditure variable (Table 1) for each household in the PUMS. One can approach this 

problem in a number of ways. Simple statistical imputation (e.g. mean response linear 

regression) will generate the expected expenditure for a given variable and household, but it 

will not preserve the population-wide distribution of expenditures. Alternatively, a sample-to-

sample “matching” algorithm attempts to assign observed expenditure values for a single 

CEX household to a statistically similar household in the PUMS. However, the CEX’s small 

size and limited geographic information (relative to the PUMS) make matching algorithms a 

poor choice. 
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To avoid these problems, the 52 CEX expenditure variables are simulated for each of the 6 

million households in the PUMS using boosted quantile regression trees in conjunction with 

a 6 million x 52 matrix of correlated random uniform variates. 

A boosted regression tree (BRT) model is fit to the CEX sample for each expenditure 

variable (the response/dependent variable). The variables in Table 1 are provided as 

potential regressors (independent variables). The R gbm package (Ridgeway 2013) is used to 

implement the gradient boosting machine of Friedman (2001) with a quantile regression loss 

function. Quantile regression allows prediction of conditional quantiles rather than the 

conditional mean of the response variable. 

A BRT model is fit for each of 52 expenditure variables and 14 percentile values ranging 

from 0.05 to 0.999. Three-quarters of the CEX observations are randomly chosen to fit the 

model (i.e. training data), and the remaining observations are used to evaluate the loss 

function at each boosting iteration. Trees are added until the loss function shows no 

significant improvement. The use of BRT models allows for non-linear relationships 

between the response and independent variables; multiple degrees of interaction (up to 5, in 

this case); and automated variable selection with little risk of over-fitting to noise. The reader 

is directed to Brieman et al. (1984), Friedman (2002), and Koenker and Bassett (1978) for 

more technical descriptions of regression trees, gradient boosting, and quantile regression, 

respectively. 

The resulting 728 BRT models are used to predict quantile values for each expenditure 

variable and PUMS household. The quantile values describe the cumulative distribution 

function for a given expenditure variable, conditional upon each household’s unique 

characteristics. 

A naïve simulation approach is to draw expenditure values randomly from the conditional 

distributions. This would ensure a plausible value for each variable-household combination 

and preserve the population-wide distribution for each variable, but it would not preserve the 

observed correlation among expenditure variables. For example, households with air travel 

expenditures at the 90th percentile of the conditional distribution are also likely to exhibit 

relatively high hotel expenditures (e.g. 80th percentile of the conditional distribution). That is, 

some expenditures remain correlated across households even after controlling for observable 

household characteristics. 
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To capture this phenomenon, I draw expenditure values from the conditional distributions 

using uniformly-distributed random variates that are appropriately correlated across 

expenditure categories. For each expenditure variable and household in the CEX data, the 

BRT models are used to identify the location (percentile) of the observed expenditure within 

the conditional distribution. A 52 x 52 weighted correlation matrix is computed from the 

percentiles. The algorithm of Schumann (2009) is then used to generate a 6 million x 52 

matrix of random uniform variates that retain the correlations observed in the CEX. 

This matrix is used to draw values from the conditional distributions computed for each 

ACS household and expenditure variable. The end result is a 6 million x 55 matrix of 

simulated expenditures. Initial household expenditure estimates for electricity, natural gas, 

and heating oil are then adjusted state-by-state to ensure the totals match reported residential 

revenues in the EIA State Energy Data System (SEDS). 

Conversion of expenditures to GHG footprints 

Conversion of expenditures to GHG emission footprints requires an assumed emission 

intensity for each expenditure variable (i.e. GHG per dollar). Table 3 provides assumed 

emission factors (kgCO2e per USD 2012) for each of the 52 expenditure variables. Some 

emission factors exhibit spatial variation due to geographic variability in the GHG-intensity 

of consumption (e.g. electricity) and/or observable spatial variation in prices (e.g. gasoline). 

In these cases, Table 3 reports the national minimum and maximum emission factors. These 

factors reflect estimates of the fully-accounted “life-cycle” emissions. 

In some cases, the GHG-intensity of consumption can be calculated directly from available 

environmental and economic data. In other cases, previous input-output and life-cycle 

studies are drawn upon to generate plausible values. National, consumption-based GHG 

emissions data from Andrew and Peters (2013) are used to provide “top down” checks on 

the magnitude of emission factors; that study constructs a multi-region input-output table 

from the Global Trade Analysis Project (GTAP) database to estimate consumption-based 

emissions for 129 countries and regions across 58 trade categories. 

The following sections briefly describe the creation of the emission factor values in Table 3 

for major types of consumption. More details are provided in the Annex. 
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– Electricity 

The GHG-intensity of electricity supply varies across space. The EPA eGRID program 

provides GHG emission factors for 26 power grid subregions in year 2010, reflecting 

emissions released at power plants during fuel combustion (zero in the case of renewable 

generators).8 Additional “upstream” emissions from associated construction, mining, 

processing, and transport are introduced via technology-specific emission factors from 

NREL’s Life Cycle Assessment Harmonization Project.9 

The subregion emission factors are further adjusted for grid line losses between generators 

and consumers. The eGRID-derived emission factors do not account for inter-regional 

electricity flows that could impact the true GHG-intensity of electricity consumed. Up to 

30% of electricity consumed in some grid subregions originates elsewhere (Diem and Quiroz 

2012), but there is currently no simple way to account for these flows. 

A dataset provided by eGRID linking grid subregions to zip codes is used to estimate mean 

GHG-intensity of electricity supply for individual PUMA’s in 2010. This is merged with 

PUMA-level electricity price data to calculate the implied GHG footprint per dollar of 

expenditure. 

– Gasoline, natural gas, heating oil, and LPG 

For these direct energy expenditures, state-specific emission factors are calculated using EIA 

fuel price data and life-cycle GHG emission estimates from the literature (see Annex for 

relevant references). 

– Air travel 

Analysis of data from the MIT Airline Data Project10 and Andrew and Peters (2013) implies 

an average emission factor of 1.35 kgCO2e per dollar of air travel expenditure (2012 USD). 

This figure is based on reported passenger revenue and jet fuel consumption for U.S. airlines 

over 2008-2012 and an estimate of upstream pollution attributable to capital formation in 

the airline industry (e.g. construction of airplanes). 

  

                                                           
8 http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html 
9 http://www.nrel.gov/analysis/sustain_lcah.html 
10 http://web.mit.edu/airlinedata/www/default.html 
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– Food and drink 

The expenditure variables include 10 food- and drink-related categories. Life-cycle GHG 

emissions per kg for associated raw foods are extracted from Venkat (2011) and combined 

with average U.S. price data for similar foods from the BLS Consumer Price Index database 

to estimate the GHG footprint per dollar of expenditure. For variables where a direct 

calculation is not possible (e.g. alcoholic beverages), Weber and Matthews (2008) is used to 

estimate the emission factor relative to that of beef. The magnitude of the initial emission 

factors is then adjusted to ensure that the national average food- and drink-related 

household GHG footprint matches that calculated by Weber and Matthews (2008). 

– Other consumption 

For all other expenditure variables, initial emission factors are taken from Shammin and 

Bullard (2009), which uses the U.S. Department of Commerce Economic Input-Output Life 

Cycle Analysis database to derive emission factors (CO2 per dollar) for the same CEX 

expenditure categories used here. The original emission factors are then scaled to ensure that 

the total GHG footprint from the underlying consumption categories matches that implied 

by Andrew and Peters (2013). This also converts the original emission factors to CO2-

equivalence, under the assumption that the allocation of non-CO2 GHG’s across categories 

is proportional to that of CO2.  

Table 3: Assumed GHG emission factor for each expenditure variable 

Expenditure variable 
Emission factor 
kgCO2e per USD (2012) 

Electricity 0.9 to 11.51 

Natural gas 1.43 to 10.86 

Heating oil 2.65 to 5.67 

LPG (propane) 1.86 to 4.84 

Gasoline 2.73 to 4.61 

Beef 3.02 

Home maintenance and repairs 2.37 

Dairy 1.91 

Other vehicle net outlay 1.82 

Water and other public services 1.64 

Used car and truck net outlay 1.37 

Air travel 1.35 

Household textiles 1.32 

Pork 1.32 

Major appliances 1.28 
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New car and truck net outlay 1.28 

Apparel 1.19 

Pets, toys, and playground equipment 1.19 

Furniture 1.14 

Laundry and cleaning supplies 1.09 

Miscellaneous household equipment 1.05 

Other entertainment supplies, equipment, and services 1.00 

Small appliances, miscellaneous house wares 1.00 

Poultry and fish 0.95 

Other food at home 0.91 

Other shelter 0.91 

Food away from home 0.84 

Television, radios, sound equipment 0.82 

Vehicle maintenance and repairs 0.78 

Alcoholic beverages 0.76 

Nonalcoholic beverages 0.76 

Public transportation 0.75 

Cash contributions 0.73 

Other household expenses 0.73 

Personal care products and services 0.73 

Rent 0.68 

Drugs 0.64 

Medical supplies 0.64 

Cereals and baked goods 0.63 

Education 0.55 

Fruits and vegetables 0.54 

Medical services 0.50 

Personal services 0.50 

Vehicle rental, leases, licenses, other charges 0.50 

Telephone services 0.46 

Mortgage interest 0.41 

Tobacco products and smoking supplies 0.36 

Home insurance 0.32 

Personal insurance and pensions 0.32 

Health insurance 0.18 

Fees and admissions 0.05 

Other fuels 0.00 

 

Results 

The final database contains estimated GHG footprints for 52 types of consumption across 6 

million households over the period 2008 through 2012, in addition to the full range of 

demographic variables inherent to the ACS. The high resolution allows analysis of a wide 

range of phenomena. In this section, I illustrate relationships between mean per-person 
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GHG footprints and per-person income, population density, and congressional district 

political affiliation.11 

Figure 1 shows average per-person GHG footprint by income group across seven 

aggregated emission categories. Utilities (electricity, natural gas, heating oil, and LPG) and 

gasoline constitute the “direct” component of the footprint; other categories reflect 

“indirect” emissions. Indirect emissions account for about 64% of the average GHG 

footprint, but this varies considerably with income. Indirect emissions account for 59% of 

the average footprint among individuals in the lowest income quintile, but this rises to 75% 

for those in the top 2% of the income distribution. 

These estimates of the “indirect” component of household GHG footprints are somewhat 

higher than reported elsewhere (for example, Grainger and Kolstad 2010). However, most 

previous studies have not used a top-down, consumption-based national emissions data 

source to constraint estimates derived from household surveys alone. Moreover, the indirect 

component reported here is supported by analysis of the EPA’s U.S. GHG Inventory12 and 

the 2009 National Household Travel Survey (NHTS).13 Together, these independent data 

sources imply indirect household emissions equal to ~64% of total GHG emissions – in 

accordance with the results presented here.14 

The disproportionate growth in indirect emissions at higher levels of income leads to 

significant inequality in GHG footprints across individuals.  On average, persons in the top 

2% of the income distribution exhibit footprints more than four times larger than those in 

the bottom quintile. It is likely that higher-income individuals greatly underestimate their 

personal GHG footprints, given that indirect emissions are less apparent than those 

associated with direct consumption of electricity, natural gas, and gasoline. 

                                                           
11 Per-person measures are used instead of household averages in order to account for differences in 

household size. Per-person averages are computed by dividing the relevant household value (e.g. total GHG 
footprint) by the number of people and weighting the result by the product of the household sample weight and 
number of people. 

12 http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html 
13 http://nhts.ornl.gov/ 
14 For 2009, the EPA reports total production-related U.S. emissions of 6.66 GtCO2e, of which 1.18 

GtCO2e are due to residential electricity- and combustion-related activities. The 2009 NHTS implies total 
household gasoline consumption was responsible for 1.21 GtCO2e. Combined this suggests household “direct” 
emissions account for 35.8% of total emissions. 
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Figure 1: Average GHG footprint and income per person15 

 

Since GHG footprints are estimated at the level of individual households, it is possible to 

explicitly chart the degree of GHG inequality nationally. Figure 2 provides the well-known 

Lorenz curve for both GHG emissions and income. The curves describe the proportion of 

each quantity assumed by a given proportion of the population, ranked from lowest to 

highest.  

GHG emissions are less unequally distributed (Gini coefficient = 0.32) across the U.S. 

population than income (Gini coefficient = 0.47). However, considerable pollution 

inequality remains. The top 10% of polluters are responsible for nearly 25% of the national 

GHG footprint, and the top 20% of polluters account for 40% of all GHG pollution. 

Conversely, the lowest-emitting 40% of the population (largely individuals in lower income 

groups) are responsible for just 20% of the total burden. 

  

                                                           
15 The 5th income quintile reported here does not include the top 2%. It includes only percentiles 80 

through 98. Student households are excluded, as are those where expenditures greatly exceed reported income; 
these are likely to be cases of under- or mis-reported income. 
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Figure 2: Lorenz curves and Gini coefficients for income and GHG emissions 

 

It is also possible to use the household-level results to visualize average GHG footprints 

across space. In order to calculate statistics for alternative geographic regions (e.g. zip codes 

or congressional districts), it is necessary to compute new sample weights that reflect the 

likelihood of a given household being located in a given region. A sample weight “raking” 

algorithm is employed to assign and re-weight households for any given geographic region, 

using region-specific marginal household counts from ACS and 2010 Census summary files. 

This technique ensures that the subsample of households assigned to a given zip code or 

congressional district, for example, reflects the actual distribution of households across 

income, age, race, housing tenure, and household size. It also allows for households to be re-

weighted for analysis down to the level of individual census tracts, though zip code results 

are presented here. More details are provided in the Annex. 

Figure 3 displays average per-person GHG footprints for more than 30,000 individual zip 

codes.16 Broadly speaking, higher GHG footprints are observed across the north-central 

areas of the country – especially North Dakota, South Dakota, Nebraska, Kansas, Colorado, 

                                                           
16 If the number of households assigned to a zip code was less than 60, the original estimate of average, per-

person GHG footprint was arbitrarily dropped to reduce the chance of erroneous values. Values for those zip 
codes are spatially interpolated in Figure 3. 
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and Wyoming. Relatively low GHG footprints are (again, generally) found in the western, 

southern, and northeastern states. 

However, intra-state variation is generally more significant than inter-regional differences. 

This phenomenon is driven by local spatial variability in population density and income. 

Throughout the country, a general pattern is noticeable in and around major urban areas. 

Footprints are often quite low within urban core areas but increase as one moves outward 

geographically. The highest footprints are found in suburban communities characterized by 

higher incomes and less efficient transport and housing. Footprints then decline as one 

moves beyond the suburbs into relatively poorer rural areas. 

Figure 3: Average GHG footprint per person, by zip code (2008-2012)17 

 

This relationship can be seen clearly in Figure 4, which shows the generalized relationship 

between average per-person GHG footprint and population density. The curve is the result 

of fitting a generalized additive model to the 30,000 zip code data points plotted in Figure 3. 

Note that a log scale is used for the x-axis. 

The results suggest that per-person GHG footprints actually increase, on average, with greater 

population density up to about 2,000 persons per square mile. At densities beyond that 

threshold, average GHG footprints decline. Overall, footprints are typically highest at 

                                                           
17 A high-resolution version of this map is available at: 

https://www.dropbox.com/s/5zzarkilwfxu0ty/Map%20of%20mean%20footprint%20by%20zip%20code%20%
28high-res%29.png?dl=0 

https://www.dropbox.com/s/5zzarkilwfxu0ty/Map%20of%20mean%20footprint%20by%20zip%20code%20%28high-res%29.png?dl=0
https://www.dropbox.com/s/5zzarkilwfxu0ty/Map%20of%20mean%20footprint%20by%20zip%20code%20%28high-res%29.png?dl=0


15 

densities between about 250 and 4,000 persons per square mile. It is only beyond about 

6,000 people per square mile that greater population density is significantly associated with 

lower GHG footprints. 

Figure 4: Generalized relationship between GHG footprint and population density 

 

Finally, Figure 5 displays the observed relationship between average GHG footprints and the 

political allegiance of individual congressional districts. Each point represents one of 435 

districts, color-coded by party affiliation of the current representative (i.e. 113th Congress). 

Each point identifies the average per-person GHG footprint in the district (y-axis) and the 

degree of partisanship as measured by the Cook Partisan Voter Index (PVI) using results 

from the 2012 election (x-axis).18 Negative or positive PVI values indicate that a district is 

Democrat- or Republican-leaning, respectively. The dashed line is a linear best fit between 

PVI and average GHG footprint. 

Most striking is the lack of obvious patterns. Individuals in Republican-held districts do, on 

average, exhibit slightly higher GHG footprints than those in Democratic districts – but the 

difference is less than 6% (mean of 21.8 tCO2e per year in Republican-held districts; 20.6 in 

                                                           
18 http://cookpolitical.com/house/pvi 
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Democrat-held). And the relationship between PVI and average footprint is quite weak (R2 = 

0.06). 

Figure 5: Average GHG footprint by congressional district and degree of 

partisanship 

 

Discussion 

This paper describes the creation of a database containing estimating GHG footprints across 

52 consumption categories for a sample of 6 million individual U.S. households. The data 

are relevant to a wide range of research questions and simulation exercises. A technique for 

raking household weights allows representative household subsamples to be created for 

geographic entities as small as individual census tracts. 

While lower than income inequality, GHG pollution inequality is substantial. The top 10% 

of U.S. polluters are responsible for nearly 25% of the national GHG footprint, while the 

lowest-emitting 40% of the population are responsible for just 20% of the total burden. On 

average, persons in the top 2% of the income distribution exhibit GHG footprints more 

than four times larger than those in the bottom quintile. 
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Surveys like the CEX and PUMS often have difficulty adequately sampling households at the 

“tails” of the income distribution, especially among wealthier households. It is likely that 

expenditures are under-reported for households at the upper end of the income distribution. 

If this is true, then actual GHG footprints among the richest households could be 

significantly higher than reported here. 

On the other hand, the current methodology makes no adjustment for spatial variation in 

prices (except for electricity and, to a lesser extent, other fuels) or sales tax. This likely 

overstates indirect emissions for households in places with higher than average prices and 

understates emissions in low-cost areas. Since higher prices are typically associated with 

high-income areas, households in those areas may be unduly penalized with the current 

approach. It is also possible that economy-wide emission factors are inappropriate at the 

upper end of the income distribution.19 Unfortunately, there is no simple way to tease out 

the relative size of these competing effects. 

With respect to spatial variation in footprints, I show that zip codes with population density 

between about 250 and 4,000 people per square mile exhibit the highest average per-person 

GHG footprints. These are typically suburban and quasi-rural areas where relatively 

inefficient transport and housing converge with higher incomes. Half of the entire U.S. 

population lives in such areas. 

GHG footprints typically decline at population densities beyond 6,000 people per square 

mile. But these are average results, and location-specific footprints are highly income-

dependent. For example, estimated mean per-person GHG footprints for zip codes 10014 

(Manhattan, New York City) and 10457 (Bronx, New York City) are 36 and 11.7 tCO2e per 

year, respectively, despite being located in the same city and having similar population 

density. 

The unambiguously lowest GHG footprints are found in places with both high density and 

lower incomes and consumption. That is, where the energy efficiency benefits of density are 

not offset by higher incomes and a resulting increase in indirect emissions. 

Residents of Republican-held congressional districts have slightly higher average GHG 

footprints than those in Democratic districts – but the difference is less than 6% (21.8 

tCO2e/person/year in Republican districts; 20.6 in Democratic). There is little relationship 

                                                           
19 For example, physically-similar cotton shirts purchased at Walmart and Abercrombie & Fitch will differ 

significantly in price, but the production process and associated life-cycle GHG emissions may be quite similar. 
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between the strength of a district’s party affiliation (i.e. Partisan Voter Index) and average 

GHG footprint. 

The absence of marked differences between Republican and Democratic districts suggests 

that the parties’ constituents are about equally exposed to the household financial effects of 

potential carbon pricing. That is, carbon pricing (e.g. a national carbon tax) would likely 

impose similar average financial costs on Republican and Democratic households through 

higher prices for carbon-intensive goods and services, ignoring effects on local employment 

and returns to capital. However, this is not what one would surmise given the parties’ 

divergent positions on climate policy. 

It should be noted that moving from the database developed here to a fully-accounted 

estimate of the incidence of a carbon tax requires adjustments for a number of important 

considerations, including: 1) the effect of household substitution away from carbon-intensive 

goods and services; 2) the degree to which the tax is passed through to consumers or borne 

by producers, and 3) the effect of a tax on returns to capital. 

The database introduced here provides a basis for identifying – with considerable spatial and 

demographic detail – how carbon tax revenues might be returned to taxpayers in a way that 

is amenable to members of both parties. A carbon tax alone imposes a cost roughly 

proportional to a household’s GHG footprint, subject to the considerations mentioned 

above. If a policy could use the new revenue to direct tax cuts, expanded Social Security 

benefits, and/or per-person “dividends” such that key constituencies experience a net 

financial benefit under the policy, it might be possible to forge a political coalition. The high 

level of spatial and demographic detail provided by this new database makes such an analysis 

possible. 
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Annex 

GHG emission factor details 

Electricity 
The EIA provides monthly average residential electricity prices at the state level.20 However, 

intra-state electricity prices can exhibit considerable spatial variation.21 To better capture 

these patterns, a dataset from NREL linking utility companies to zip codes along with 

additional EIA data on residential electricity revenues and deliveries for the same utilities is 

used to estimate average residential electricity prices for individual PUMA’s in the year 

2010.22,23 The spatial variation observed in 2010 is used to downscale state-level, monthly 

prices to individual PUMA’s over the study period. 

Additional “upstream” emissions from associated construction, mining, processing, and 

transport are introduced via technology-specific emission factors weighted by each 

technology’s share of subregion generation. The upstream emission factors are based on data 

from NREL’s Life Cycle Assessment Harmonization Project.24 The assumed upstream 

emission factors are (gCO2e/kWh): 

Coal: 49 

Natural gas and oil: 150 

Nuclear: 12 

Hydropower: 7 

Solar: 42 

Wind: 11 

Biopower: 40 

Geothermal: 40 

                                                           
20 http://www.eia.gov/beta/api/qb.cfm?category=1012 
21 http://en.openei.org/wiki/File:2012_12_14_Electricity_Price-01.jpg 
22 http://en.openei.org/datasets/node/899 
23 http://www.eia.gov/electricity/data/eia861/ 
24 http://www.nrel.gov/analysis/sustain_lcah.html 
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Gasoline, natural gas, heating oil, and LPG 
The EIA provides monthly average residential fuel and retail gasoline prices at the state level 

(prices for heating oil and LPG during the heating season only). The assumed life-cycle 

GHG emission factors are (gCO2e per MJ LHV): 

Gasoline: 92 (Burnham 2012; Lattanzio 2014) 

Natural gas: 78 (Burnham 2012) 

Heating oil: 83  (ICF International analysis of New York City heating oil supply25) 

LPG: 82 (Burnham personal communication) 

Air travel 
Analysis of data provided by the MIT Airline Data Project26 on total operating revenue, 

passenger revenue, and jet fuel consumption over the period 2008-2012 results in an average 

direct emission factor of 1.153 kgCO2e per dollar of expenditure. This figure assumes fuel 

consumption accounts for 98% of the airline industry’s operational GHG footprint27, and jet 

fuel exhibits a life-cycle GHG emission factor of 87.5 gCO2e/MJ (Stratton 2010). 

A comprehensive emission factor should also account for pollution attributable to capital 

formation in the airline industry (e.g. construction of airplanes). Analysis of data from 

Andrew and Peters (2013) suggests inclusion of capital formation increases the direct 

emission factor by ~17% to a final emission factor of 1.35 gCO2e per dollar of air travel 

expenditure (2012 USD). 

Other consumption 
Shammin and Bullard (2009) calculate an emission factor for “Public transportation” 

inclusive of air travel. In this study, air travel is treated separately. Consequently, the original 

emission factor is reduced by ~80% prior to re-scaling to reflect the removal of GHG-

intensive air travel from the category. The reduction is based on observed U.S. airline jet fuel 

consumption and passenger revenue in 2003 (Shammin and Bullard’s base year) and the fact 

that total air travel expenditures are about twice that of other public transportation spending. 

                                                           
25 http://www.nyc.gov/html/planyc2030/downloads/pdf/nyc_combined_natural_gas_report.pdf 
26 http://web.mit.edu/airlinedata/www/default.html 
27 https://www.united.com/web/en-US/content/company/globalcitizenship/environment_faq.aspx 
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Raking household weights for specific geographic regions 

The PUMS only identifies individual households by PUMA. In order to analyze patterns for 

other geographic entities, it is necessary to assign households new sample weights that reflect 

the likelihood of the household being located in the desired entity. 

Linkage between PUMA’s and other geographic entities is provided by the Missouri Census 

Data Center’s MABLE/Geocorr12 system.28 This provides population-based weights for 

allocating a PUMA’s population to a particular entity. An initial estimate of a household’s 

revised sample weight is simply the product of the original weight and the allocation weight 

provided by MABLE. 

Since the characteristics of households may vary considerably within a PUMA, the initial 

revised weights are then adjusted (or “raked”) to ensure that the entity-specific sample 

resembles the true population in key respects (i.e. to create a balanced sample). Census 

Bureau “summary files” provide a description of the true population for a geographic entity. 

Summary files are derived from full samples of Census data (either 2008-2012 ACS or 2010 

Census, in this case) and so provide the most complete information about a specific entity 

(e.g. a zip code). Two summary files are used: the ACS B19037 and 2010 Census H16. The 

former provides household marginal counts by income group, householder age, and race; the 

latter by housing status (owner or renter), household size, and race. 

For a given entity, the initial revised weights are then iteratively “raked” until the marginal 

household counts of the PUMS-derived subsample (closely) match those of the actual 

population (i.e. summary files). This provides a defensible way of assigning surveyed 

households to individual, small-scale geographic entities, even though the native PUMS 

provides only a moderate level of geographic detail. 

                                                           
28 http://mcdc.missouri.edu/websas/geocorr12.html 


