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Abstract

In contrast to current donor policy, which funds a recipient country’s national AIDS control program, this
paper proposes a measurement strategy to enable a donor to reward a recipient country’s success at HIV
prevention, irrespective of the inputs, activities, or who gets the credit. In accordance with the “cash-on-
delivery” model of foreign assistance, the objective is not to replace traditional input- or activity-oriented
aid, but to complement it by enhancing the motivation for local actors and their partners (including the
traditional bilateral and multilateral funding agencies and their agents) to achieve measurable reductions in the
rate of new HIV infections. This paper proposes two approaches to measuring the number of HIV infections
averted between a baseline survey and a follow-up survey and explores the properties of ten alternative “payout
functions” which would link measured epidemic changes to the size of the reward to be paid. All measurement
approaches include the possibility of statistical error and thus a risk of rewarding the country too little or too
much. This risk depends on the initial rate of infection and on HIV prevention success and can be reduced by
either increasing the survey sample size or increasing the interval between surveys. By negotiating in advance
the choice of one of these measurement approaches and one of a menu of payout functions, the donor and
recipient agree on the recipients incentive structure with respect to the magnitude and precision of the
estimated reduction in the rate of new infection.
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A Story about the Power of Economic Incentive

From time immemorial the inhabitants of Aneityum, an island of the South Pacific nation of Vanuatu,
tolerated endemic malaria, with its periodic bouts of fever and occasional childhood deaths. In the
1980s, their island lifestyle was sustained by fishing and enriched by bi-annual visits of a cruise ship
and its free-spending tourists. Then in 1990 two tourists contracted malaria. According to Kevin
Palmer of the World Health Organization, “I talked to the captain who confirmed that passengers
had gotten sick with malaria after visiting Vanuatu. It wasn’t certain whether they were infected
during the Aneityum visit or not, but regardless [the cruise ship captain] demanded that the island be
declared malaria free or the ship wouldn’t stop anymore. This is why the islanders came to WHO and
the malaria program people in Port Vila [their country’s capital city] to ask for help.”[1] Journal
articles document how the extraordinary community-level motivation and participation of the
Aneityum population led to the successful elimination of malaria on the island.[10] According to
Palmer, “The happy ending to the story is that Aneityum is now a popular tour destination known as
Mystery Island so the people on Aneityum are economically secure thanks to what they

accomplished.”[1]

Introduction

In recent years there have been billion dollar investments in interventions to treat AIDS patients and
reduce HIV transmission, including the President’s Emergency Plan for AIDS Relief (PEPFAR) and the
Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM) [2,3,4,5]. The promise from early
modelling work [6,7,8,9] was that a scale-up of interventions and services, thought to be effective at
reducing the risk of infection, would reduce transmission throughout the population. While the
greatly increased donor spending has dramatically increased the number of persons in poor
countries who receive antiretroviral therapy (ART), observers agree that the donors have had
difficulty pointing to clear successes in HIV prevention. Since the only sure way to reduce the future
cost of ART in AIDS affected countries is to prevent infection, the need for effective intervention is

becoming more acute and apparent.



This paper proposes the application of a new approach to foreign assistance, called the “Cash-on-
Delivery” (COD) approach, to the arena of HIV prevention. The COD approach has been developed
and proposed for application in other sectors in response to four intellectual currents in the field of
foreign assistance in general and HIV prevention in particular [11,12]. First, there is a trend towards
results-based foreign assistance, which is exemplified by the US government’s Millennium Challenge
Corporation [13] and the Global Alliance for Vaccines and Immunisation at the national level and the
performance based incentive movement at the level of the individual social service facility [14].
Second, there is a growing belief among some observers that the foreign “planners” who have
traditionally led the design and implementation of development assistance, have less pertinent
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knowledge and are less important for success than are the local “seekers,” who could best solve the
problems of making schools or health clinics work on the ground, provided they were properly
motivated [15]. Third, following the work of Filmer and Pritchett, an increasing number of observers
have wondered whether the poor results achieved by public service delivery in poor countries can
be partly attributed to insufficient motivation at higher as well as lower levels of public service
delivery institutions [16]. Finally, in the domain of HIV prevention, analysis of data on the cost of
service delivery reveals enormous unexplained variation in unit costs for the delivery of the same

service within as well as across countries, suggesting substantial scope for enhanced incentives to

improve the prevention results obtained from available prevention resources [17,18,19,20].

The cash-on-delivery approach is a natural consequence of these ideas. The basic concept is that a
donor (bilateral, multilateral or philanthropic) and recipient (national or state government) enter
into an agreement or “contract” in which the donor agrees to reward the recipient country if it
achieves, or proportional to its achievement of, a certain development outcome. As distinct from
financing budget support, inputs or activities, the COD approach to assistance pays only on the basis
of measured results. The COD payment does not substitute for traditional input-based foreign
assistance. Indeed the intent of COD is to improve the effectiveness of other aid modalities by
motivating national leaders and local actors to focus on the HIV prevention objective in the interest
of obtaining the prize. Because the COD approach does not prescribe how prevention results are to
be achieved or that any reduction in incidence be attributed to a specific intervention, it leaves the
recipient free to mix interventions in the spirit of the recent discussion of “combination prevention”

[21,22].



Nor does the COD approach specify how any prize would be distributed among the local actors who
have contributed to winning it. We expect that a recipient government might best leverage a COD
agreement into HIV prevention achievements by openly discussing the prize distribution with
constituent local governments and civil society groups. Depending on the recipient’s perception of
where incentives would do the most good, the recipient might offer to distribute portions of the
prize to local government health officials or to NGO’s or even to the mayors of towns. Although the
COD contract itself would make no stipulation about how the prize would be spent, a minister of
health wishing to use the prize to motivate local governments and their constituents might promise
that the award would pay for a football stadium in the towns with the best HIV-prevention
performance. The recipient government might even choose to distribute the prize as small
payments to individual citizens, an approach that would emulate the incentive structure implicit in

the Vanuatu malaria elimination story in the box at the beginning of this essay.

The cash-on-delivery approach is crucially dependent on being able to determine whether HIV
transmission has been reduced, and in a fair and timely way. This is harder than determining the
impact of other types of programs (such as measuring the progress of antiretroviral treatment
programs by counting numbers on treatment) since it amounts to counting non-events (infections

averted) and is thus esoteric, invisible and open to debate.

Donors typically assess HIV prevention programs based on measured levels of program activity, on
surveys of sexual behaviour or on estimates of the total number of infected people. But the link
between program activity and a real effect on transmission is not straight-forward [23]. The metrics
of program activity (e.g. number of condoms distributed, testing and counselling sessions attended)
do not necessarily indicate any change in individuals’ sexual risk behaviour. For instance, most
people do not substantially change their behaviour after counselling (and some even increase risk
behaviour) [24,25], so the expected impact on the epidemic is minimal [26]. Similarly, reported
sexual behaviour may not perfectly correspond to actual sexual behaviour. The reasons for this
include the contamination of the information with social-desirability biases (where survey
respondents are less likely to report unprotected sex or many casual sex partners [27]) and the
difficulties in capturing a complex pattern of behaviour with just a few behaviour indicators[28,29].
For instance, a measurement of ‘condom use at last sex’ does not record how consistently condoms

were used in that relationship, whether or not they were used more at the start of the relationship



or whether condom use would be different with a different partner, all of which determine the net

impact of ‘condom use’ [30].

Just as behaviour can change without affecting HIV transmission, HIV transmission can change
without a change in individual behaviour. Mathematical models of HIV transmission have shown
that, at the aggregate level, indicators of sexual behaviour can change over the course of the
epidemic without any individual-level changes [31]. Since AIDS death disproportionately affects
those with the riskiest sexual behaviour, over time the population is selectively depleted of
individuals with many partners or who do not use condoms, bringing the average measure of these

behaviours to ‘safer’ levels (Figure 1).
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Figure 1: HIV-related death disproportionally affects those with highest risk so that aggregate-level indicators in
sexual behaviour (% with more than one partner in last year or mean partners per year among those in the lowest
risk group) can change over the course of the epidemic without change in any individual's behavior. After: Hallett
et al. 2006 [31].



If there are genuine changes in sexual behaviour, then their impact on transmission is still not clear
[23]. Large reductions in risk of one type (e.g. fewer partners) may be offset by another change (e.g.
less condom use). It may be possible to calculate an overall measure of risk — for instance, number of
unprotected sex acts is influenced by both partner numbers and condom use — but it would not be
possible to fully account for all types of behaviour that contribute to the chance of infection. For
instance, individuals may reduce partner number and increase condom use, but increase the
duration of overlap between partners (increasing concurrency) which can accelerate transmission
[32]. Similarly, the choice of partner may be changed, so that the number of unprotected sex acts is
unchanged, but the sexual partner is more likely to be infected [28,33]. Hence, it would be almost
impossible to fully characterise the true impact that any subtle behavioural shift has on the overall

chance of infection acquisition.

It can also be the case that individuals at high risk of infection can make substantial behaviour
change but remain very likely to become infected (Figure 2). On the other hand, behavioural changes
among individuals with very low risk — who would be unlikely to be infected anyway — have little or

no effect on their own risk of acquisition.
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Figure 2: Probability that an individual acquires HIV infected as a function of the cumulative number of sex acts
exposed to HIV. For highly exposed individuals, substantial reductions in risk (arrow) do not substantially reduce
the overall probability of HIV infection. Source: Authors’ construction based on the model in the appendix.

Finally, behavioural changes that really do reduce the individuals’ risk of infection may still have a

limited impact on the whole epidemic. The relationship between the potential for epidemic spread



in a population (summarised in the basic reproductive number, Ry: the number of new infections
generated by one case in a susceptible population ) and the equilibrium level of HIV prevalence
exhibits threshold and non-linear behaviour (Figure 3) [34]. If Ry is high, then substantial behavioural
changes among some individuals that makes them fully protected from infection (e.g. perfectly
consistent condom use), may not lead to a great reduction in prevalence. Alternatively, if behaviour
change is restricted to a part of the population with less risky behaviour where transmission is not
sustainable (R, less than one), then changes which further reduce the riskiness of their behaviour

would have a limited effect on the overall rate of infection.
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Figure 3: The basic reproductive number (Ro) determines the endemic level of HIV. (The model population is
composed of two sub-populations: one with 70% of the population at low risk of infection and another with 30% of
the population at high risk). Source: Authors’ construction, using a simplified version of the model presented in
the appendix.

For these reasons, it is important to base assessments of the trend in a national epidemic or
evaluations of the impact of specific preventive interventions on ‘hard’ outcomes — reported sexual
behaviour indicators can change through bias or the natural course of the epidemic, and may have
little bearing on the rate of HIV transmission. The prevalence of certain sexually transmitted
infections (STI) has often been suggested a useful “proxy” indicator for the risk of HIV transmission.
The relative abundance of STIs and the better correlation between incidence and prevalence for
short-duration bacterial infections makes this idea superficially attractive. However, using STI proxies
is not reliable since the way in which different sexually-transmitted infections respond to patterns of
risk and change in behaviour varies substantially and is determined by their various natural histories.

For instance, the prevalence of some STIs is tightly linked only to the behaviours of those at the



highest risk of infection, while the transmission of HIV in mature generalized epidemics is thought to
be most linked most to the majority of the population at lower risk. Thus, trends in an STI proxy do
not necessarily correspond to changes in risk in the population that will translate to reductions in

HIV transmission.

Hard outcomes related directly to HIV are thus the only acceptable measure of impact -- in particular
HIV prevalence or HIV incidence. The HIV prevalence rate is the fraction of a given population
(typically men and women aged 15-49 years) that is infected with HIV at a given point in time,
whereas the HIV incidence rate is the fraction of an uninfected population that becomes infected
over a given interval, typically a year. Prevalence is therefore determined by the balance between
the incidence of new infections and HIV-related deaths. The heterogeneity in risk of acquiring and
transmitting HIV means that there could naturally be a trend in incidence over time [31,35,36,37].
Mathematical models show that incidence is expected to rise quickly at first as the infection spreads
among those with the riskiest sexual behaviour but then decline as infections then spread among
those at lower risk (Figure 4(a)). Since HIV leads to death after a decade [38], there is also a longer-
term reduction in incidence because the individuals with the riskiest sexual behaviour are selectively
removed from the population (Figure 1). This can reduce incidence both directly, because there will
be fewer high-risk individuals to spread the infection, and an indirect effect, and indirectly, because
low-risk individuals will have less opportunity to form risky sexual partnerships [39]. The overall
effect is that incidence rises quickly early in the epidemic and falls to a lower level later on. The long
interval between HIV infection and AIDS deaths means that the surge in mortality caused by the
early spike in incidence will not occur until after incidence has settled at a lower level. This means
that for a short time in a mature epidemic, AIDS deaths can exceed current incidence levels and lead
to a decline in prevalence (Figure 4(b)). After that wave of mortality, and in the absence of further
changes in incidence, prevalence will remain constant. However, in recent years availability of
antiretroviral therapy (ART) has increased dramatically [40]. This extends survival for HIV-infected
individuals [41], which would naturally lead to an increase in HIV prevalence over time, even if

incidence does not change [42].
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Figure 4 Model projections of (a) incidence (b) prevalence for a generalised HIV epidemic without antiretroviral
therapy in the absence of behaviour change (solid lines) and with behaviour change (50% reduction in partner
change rate) starting in 1990, 1995 and 2000. Source: [5]

It is also possible that increases in AIDS mortality lead not only to reductions in risk in the population
(as assumed above) but also to some increases in risk. This would occur, for instance, through
mortality leading to higher rates of widowing [43]. Widow and widowers are likely to be infected
with HIV (having probably been infected by their late spouse towards the end of their life) but many

resume sexual activity with several new partners.

Thus interpreting trends in prevalence is problematic, and it would be much easier and less
controversial to use a measure of incidence, if possible. In a mature epidemic, changes in individual
behaviour are much more likely to be followed by changes in incidence than by changes in
prevalence (Figure 4), and incidence is not confounded by the scale-up of the antiretroviral
treatment. Until recently incidence could only be measured in cohort studies where the same
individuals are tested for HIV, typically at intervals of 1-2 years. However, these measurement are
exposed to an important bias arising from follow-up being more likely among stable populations in
individuals, which may be a lower risk of infection than others [44]. Furthermore, the process of
repeatedly testing (and having results returned) may itself make the studied population cohort

unrepresentative of the general populations [45,46].

It also important to remember that all measurements of incidence and prevalence are associated

with some degree of uncertainty due to sampling error. This means that no estimation of the



difference between end-of-period incidence and what it might have been can be perfectly precise
(even if systematic biases, as discussed above, are minimised). In randomly-controlled evaluation
trials or routine assessment of national programs, a conservative approach is usually adopted
whereby the chance of falsely concluding that behaviour change has reduced transmission is
minimised, but in the COD format this could lead to success going unrewarded. In considering
approaches that could be used to measure reduced HIV transmission, issues of precision and

confidence in the estimation of the number of averted cases are of primary interest.



Aim for this Paper

To explore possible strategies for measuring and rewarding success in preventing new HIV infections

for the purpose of implementing a cash-on-delivery program for HIV prevention.

The Context and Two Candidate Approaches

Suppose that a donor and recipient government negotiate and come to agreement on a cash-on-
delivery contract which specifies that at the end of a specified time period the donor will pay to the
recipient government a reward which is a function of the estimated reduction in HIV incidence and
of the precision with which that reduction has been estimated. According to the terms of that
contract a baseline population survey is conducted at time 0 and a follow-up population survey is
conducted at time T, at the end of the cash-on-delivery contract. The two surveys follow exactly the
same methodology, including sample size, mode of sampling, conduct of interviews, supervision and
auditing arrangements, HIV testing procedure and so on. The financing of both of these surveys

must be arranged at the same time as, or prior to, the signing of the donor-recipient contract.
The two most promising ways to estimate the reduction of HIV incidence are as follows:

1. The “prevalence modelling” approach. Compare the observed trend in prevalence between
the baseline and follow-up survey with a counterfactual projection of the prevalence that
would have been observed at follow-up incorporating data on the uptake of antiretroviral
therapy and assuming no other change after time zero in the historical trends in incidence
and mortality.

2. The “tests of recent infection” approach. Determine trend in incidence using Test of Recent

Infection (TRI).

Further details on each of these two ideas are provided in the following sections.

1. Compare observed trend in prevalence with a counterfactual projection

HIV prevalence can be measured in cross-section by both the baseline and the follow-up population

surveys. The difference in prevalence between the two surveys is the starting point for determining

! See Birdsall, Savedov & Mahgoub (2010) for more discussion of the political economy, organizational and
institutional issues aspects of the cash-on-delivery foreign assistance strategy and of how it might be applied
to the education sector.
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whether incidence has declined. But a statistical test for a reduction in prevalence is not sufficient,
since, as discussed above, increases or decreases in prevalence could occur even if incidence is
unchanged or moves in the opposite direction[37]. To overcome this difficulty, a mathematical
model is used to construct a counterfactual projection for HIV prevalence is the absence of any

behaviour change between the two surveys.

The model used to make the projection should be a mechanistic representation of the spread of HIV
[33,47]. If the population of interest is in Africa, then a basic description of heterosexual
transmission should be captured. If the population of interest is in, for instance, Eastern Europe,
then the mechanism should represent transmission by sharing intravenous drug injecting equipment
as well as sexual contact [48]. The model should have parameters with “real-world” meaning (as
distinct from a purely phenomenological model) so that data can be used to specify parameter
values. The model can be analysed in a Bayesian melding framework to allow the projections and
conclusions drawn to fairly reflect the uncertainties in model parameters as well as to synthesise all
available information about model inputs and outputs [49]. In this framework, instead of running the
model once with one set of fixed parameter values, we run it millions of times, each time with
parameter values drawn randomly from ‘prior’ distributions that represent knowledge about that
aspect of the model. For instance, the parameter for the transmission rate of HIV in each
unprotected sex act is from a metaanalysis from recent literature reviews [50,51], with the location
and shape of the distribution selected such that 95% of it mass lies within the 95% confidence limits
from the metaanalysis. . Where the existing literature is insufficient to provide a prior distribution,
an uninformative prior captures this lack of information. For example, in this hypothetical country
almost nothing is known about the degree to which individuals with given risk behaviour choose
sexual partners with the same or with different risk behaviour. The parameter in the model that
captures the degree of mixing is bounded by definition within the closed unit interval [29,52]. For

this parameter, the appropriate uninformative prior is a uniform distribution between 0 and 1.

The statistical likelihood of the model runs is quantified based on consistency with available time-
series prevalence data [53,54]. In Africa, the richest source of time-series data is from the antenatal
clinic (ANC) surveillance system. Clinics are selected for inclusion in the surveillance system and
report the HIV prevalence of approximately 300 women attending consecutive appointments within

a defined time period [55]. Since different sites will serve different types of populations, across
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which HIV prevalence may vary, the data is modelled using fixed effects for each site. Information on
the course of HIV prevalence early in the epidemic (before the ANC surveillance system was set up)
can be used to further discriminate between model runs. Depending on whether the earlier pre-
surveillance information comes from large representative sample surveys or only from convenience
samples and expert opinion, the prior distributions for the parameters describing the early history of
the epidemic can be empirical or subjective. Information on the use of antiretroviral treatment in
the population must be incorporated into the model analysis, since, as discussed, this can lead to
HIV prevalence being inflated, and could mask reductions in incidence. In the analysis above, it was
assumed that individuals on ART could be identified. Laboratory assays exist for this purpose [56]

and the 2008 HSRC South Africa survey tested all individuals for the presence of ART in their blood

[57]. If that is not possible, ART coverage can be indirectly estimated through questions on the

survey instrument, as was done in the recent Kenya AIDS Indicator Survey [58]. If self-reported ART

is used in the analysis, this should enter in the form of prior information, with a range of uncertainty
that reflects the potential for misreporting, rather than as data. Routine surveillance of program
activity can be used as a further indirect way to measure ART uptake, which could be used to specify
that prior distribution.> A full proposed technical methodology is presented in Hallett et al. [37].

Details of the simulation model are provided in an appendix to this document.

Figure 5 shows an example application of the method using simulated HIV prevalence data for a
hypothetical country experiencing a severe HIV epidemic, with prevalence in year 2002 of 23%
(Figure 5(a)). In this example, data from the antenatal clinic surveillance system, the prevalence in
the baseline survey (with sample size 8000), local data about sexual behaviour and data from the
scientific literature about HIV natural history [38,50,51,59,60] have been used to generate a set of
model “fits” in the manner described above (Figure 5(b)). It was assumed that there were 10 ANC
clinics, each of which sampled 300 women per year. There was a fixed variation between the sites
that was normally distributed with mean equal to the true average prevalence plus D and standard
deviation equal to 0.002. This variation is typical of the variation in real ANC datasets, and is due to

clinics in the surveillance system being located in different types of populations (e.g. near rural town,

? A further elaboration of the prevalence modelling method disaggregates each of two sample surveys by age
group. Assuming the two surveys are, say, five years apart, then the people aged 20 to 25 in the second survey
can be thought of as a random sample from the same cohort as the group that was aged 15 to 20 at the time
of the baseline survey. After adjusting for the expected death rate of that age cohort and other possible
joiners and leavers, the increase in prevalence between the two surveys is an estimate of the incidence rate in
the five-year age cohort. Although a useful tool for diagnosing the age profile of risk in the studied population,
for present purposes this approach has the disadvantage of providing only a single estimate of HIV incidence
(by age group) and thus does not contribute to the estimation of HIV infections averted.
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need main road, etc.) with higher or lower average levels of HIV prevalence. The value D represents
the extent to which the ANC prevalence, across all sites on average, over or under-estimates HIV
prevalence in the overall general population. There is evidence that ANC estimates tend to be
somewhat too high [61], which may be due to pregnancy, especially at younger ages, being
correlated with higher risk of HIV [62]. In that case, D can be set to a positive value, estimated from a
comparison of ANC prevalence estimates and population survey estimates. For simplicity in this

demonstration, D was set to zero.

The variation between the models runs reflects the inability of the existing data to uniquely specify
just one set of parameters as being consistent with the data. That is, uncertainty in many factors
that contribute to the spread of HIV means that several sets of parameters are supported by data.
This uncertainty leads to a range of projections for HIV prevalence for the period 2002 to 2007. Even
without changes in sexual risk behaviour, most of the simulations project a decline in prevalence
between 2002 and 2007- typically by 1-2% over the five year interval (Figure 5(c)). The range of
prevalence values that could be expected in 2007 is thus, 17% to 28% (Figure 5(d)) (the wider limits
also reflecting between-run variation due to sampling errors in the prevalence measurements).
Essentially, it is this distribution of projections for HIV prevalence in 2007 under the “null
assumption” of no behaviour change that is used as the counterfactual to the “observed” prevalence
in the follow-up HIV prevalence survey. Thus, it can be seen that a measured value of 20-21% HIV
prevalence in 2007 — although actually a substantial decline on the 2002 measurement — would still
be entirely consistent with this null projection, and there would not be strong evidence for
behaviour change having affected the course of the epidemic. However, HIV prevalence
measurements at follow-up in 2007 smaller than 17-18% would be very unlikely if there had not
been changes in behaviour reducing the rate of HIV transmission, and thus measured 2007
prevalence this small would be evidence that behaviour change had affected the course of the

epidemic.
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Figure 5: Projection of 2007 HIV prevalence based on data through 2002 under the assumption of no
subsequent behaviour change (Model My). (a) The data from ten antenatal clinics (red cross and lines: each
cross shows one point estimate from one clinic and the lines joins estimates from the same clinic) and the
baseline survey in 2005 (blue square). The prior limit on prevalence in 1984 is shown as a vertical grey bar. (b)
Model projections assuming no behaviour change (called Model Mo): each thin grey path shows one item in the
posterior distribution and the thick black path shows the best supported projection. (c) Distribution of the
expected within-run change in prevalence between 2002 and 2007 using Model Mo (i.e. without behaviour
change). The vertical red line shows the naive null assumption of zero change.) (d) Distribution of the expected
prevalence in 2007 using Model My (i.e. without behaviour change). The vertical blue line shows the prevalence
estimate in the baseline survey in 2002.

A statistical test of the hypothesis that risk behaviour changed after 2002 can be formulated as a
model comparison between the constrained model without behaviour change (model My) and the
unconstrained model with possible behaviour change (model M;). In model M; the possible timing of
any behaviour change between the baseline and follow-up survey and the magnitude of the change
in risk behaviour are characterized by an uninformative and an informative prior, respectively, the
latter based on trends in behaviour indicators measured at the time of the surveys. The Bayes Factor
(K) is comparable to the likelihood ratio of non-Bayesian statistics and measures the degree to which
the numerator model is superior to the denominator model in explaining the newly observed data,

across the range of parameter space supported by the prior information (Equation 1). Using Model
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M, as the reference model in the denominator, a sufficiently large K statistic allows us to judge
whether behaviour change has occurred subject to the uncertainty incorporated through the

Bayesian priors on parameters and earlier data.

‘. [ p(0)p(Wjo, M, do
[ p(6)

0 p(W|9’ M, )dO

Equation 1: Measuring the relative performance of the two models Mg and M;. P(W|p, M X) is the likelihood of

the simulated epidemic given the set of parameters @ and model My, and p(ﬂ)is the likelihood of that
parameter set.

It has been proposed [63,64] that the natural way to interpret K values is on a logarithmic scale, such

that:

= 0<2 In(K) <2 indicates little or no support for model M,/ behaviour change affecting
epidemic;

n 2<2 In(K) <5 indicates some support for model M, / behaviour change affecting epidemic

= 5<2 In(K) <10indicates strong support for model M, / behaviour change affecting epidemic;

= 2 |n(K)2 10 indicates very strong support for model M, / behaviour change affecting epidemic.

The K value would be fed-forward to the payout function to determine the cash-on-delivery reward

for the incidence reduction.

Figure 6 demonstrates the application of the prevalence modelling approach to the hypothetical
country discussed above, after a baseline survey in 2002 and a follow-up survey in 2007 (Figure 6(a)).
In this hypothetical country, prevalence declined between 2002 and 2007 from 23% to 16% as a
result of changes in risk behaviour beginning in 2002 (the data were simulated, so in this

hypothetical example the “truth” is known).

The solid dark path in Figure 6(b) shows the time trend of population HIV prevalence that achieves
the largest value of the K statistic and thus is deemed to best fit the updated simulated data. Note

that the 16% value given by that best fitting path for HIV prevalence in 2007 is outside the range of

15



values supported under the null model (Figure 5(b) and 5(d)). Thus, the fit of Model M, incorporating
changes in risk behaviour (Figure 6(b)) is much better than that of the constrained model that does
not allow behaviour change. In this demonstration, the computed value of 2 In(K) is 72, much larger
than the conventional threshold of ten, which would be strong evidence for behaviour change
driving this decline in prevalence, rather than natural epidemiological dynamics alone. This finding
would fulfil the payment conditions of a COD contract which had specified that payment be made if

HIV infections were averted by post-2002 behaviour change.
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Figure 6: Projection of 2007 HIV prevalence based on data through 2002 and allowing for subsequent
behaviour change (Model M,). (a) The data from ten antenatal clinics (red cross and lines: each cross shows
one point estimate from one clinic and the lines join estimates from the same clinic) and the baseline survey in
2002 and follow-up survey in 2007 (blue squares). The prior limit on prevalence is shown as a vertical grey bar.
(b) Model M; (which allows behaviour change): each thin grey path shows one item in the posterior distribution
and the thick black path shows the best supported projection. (c) The uninformative prior (dashed line) and
updated posterior distribution for the timing of behaviour change (solid line). (d) Estimated cumulative number
infections averted (error-bars shows 95% interval) in the population.

Figure 6(c) shows the uninformative prior distribution (dashed red lines) and the posterior

distribution (solid lines) for the dates during which behaviour change occurred. (Recall that the prior
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distribution describes the analysts’ subjective view of possible dates when behaviour change might
have occurred before the analysis is run, and that the posterior distribution is a version of the same
probability distribution which has been subjected to Bayesian updating in light of the data). The data
were originally simulated using a reduction in risk between 2002 and 2004 starting immediately after
the baseline survey. The model analysis shows strong support for changes in risk behaviour in that
period. The prior (1997-2007) was set to include some years where behaviour did not change (i.e
1997-2002, before the baseline survey), and the posterior shows little or no support for behaviour
change in that period. That is, the estimated timing of risk reduction coincides with when the
behaviour change was in fact introduced into the model, and this temporal resolution contributes to
the evidence for the detected changes in risk being associated with the launch of the COD

agreement.

It is also possible to calculate the number of infections averted in the model M, , with the posterior
distribution of model fits providing the basis for 95% credible intervals (Figure 6(d)). This
information on the most likely number of fewer infections in 2007 and on the precision with which

that number is estimated serves as input to the payout function which determines rewards.

It should be noted that, strictly, the data used to monitor trends before and after the baseline could
be the antenatal clinic data or only the baseline and follow-up surveys, as well as a combination of
the two, as shown in the example. (However, the ANC data is always required to inform the historic
trajectory of the epidemic before the baseline survey, aggregated measures of which are already
publically available [40]). The advantage of relying more heavily on the baseline and follow-up
surveys are that: (i) Household-surveys are thought to provide a closer approximation to general
population samples, and thus a less biased estimate of the overall scale of the epidemic [61,65]; and,
(ii) observed changes in prevalence are not partially confounded by changes in patterns of fertility,
or clinic attendance, which could potentially generate spurious trends in ANC prevalence estimates

[47,55,66].
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2. Determine trend in incidence using Test of Recent Infection (TRI).

A direct measure of incidence would provide a better tool to plan and evaluate HIV programs [67].
The most direct method is to follow a large cohort of HIV negative people over time, as is done, for
example, in Phase Il HIV vaccine trials, but cohort studies are prohibitively expensive and often
unrepresentative [46]. Although the prevalence modelling method described in the preceding
section can be used to estimate incidence and averted HIV infections [68,69], at least three surveys
would be required to directly estimate changes in incidence and modest breaches in some in-built
stability assumptions could generate misleading results[68]. Therefore, a practical and valid method
of measuring incidence from cross-sectional surveys would be ideal, and has been a goal of testing
research for over a decade. Recently a number of new testing algorithms have been developed in

the hope of serving this purpose [70].

The underlying principle of a set of new blood tests, or Tests For Recent Infection (TRI), is that the
immunological response to HIV evolves over the first months of infection, and by measuring the
quantity, proportion or avidity of HIV antibody, recent infections can be discriminated from older
ones [71] (Figure 8). The most widely used of these assays is the BED capture enzyme
immunosorbent assay (‘BED test’), in which the optical density varies according to proportion of I1gG
that is anti-HIV antibody [72]. A test is “BED-recent” if the test produces a spot that is sufficiently
translucent to have a measured normalised optical density of less than 0.8; if it is more opaque, it is
“BED-chronic”. Earlier analytic approaches had considered that a BED-recent results means that
infection had occurred sometime in the previous 150-187 days [73,74,75]. Thus, the rate of new
infections could be estimated because the question of incidence estimation becomes only a question

of counting the number of individuals in that category [73].

BED-derived estimates of incidence have been compared with gold-standard measures of incidence
in a range of settings [73,76]. The common finding has been that BED estimates are substantially too
high [76,77], leading to calls for caution in the use and interpretation of the test [78]. It has become
clear that this is because the test misclassifies some individuals infected for a long time as being
“BED-recent” [77]. If the proportion of such misclassifications were constant across settings or
known for an individual setting, the incidence estimators could simply be deflated by the
appropriate proportion to correct for these misclassifications [79] [80] [76,77,81,82,83].

Unfortunately, the fraction of individuals infected for more than a year that are misclassified as
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recent varies between 1.7% (South Africa[82]) and 27% (Rwanda and Zambia[76]), casting doubt on
the reliability of any HIV incidence estimates which rely on such a simple adjustment [84]. There are
indications that this variability results from individuals with chronic infection regressing back to the
BED-recent state as the immune system deteriorates [76,83,85,86,87], and from the differential
survival of those who do not develop a sufficient immune response to ever be BED-chronic (who
tend to be elite suppressors and survive for longer) [56,88] compared to others. This means that the
values needed to correct for misclassification vary by age-group, over time and between countries
[84], leading to difficulties in drawing comparisons and measuring trends. Thus, neither absolute

levels or trends in incidence can be reliably determined by the BED test alone [89].

Nevertheless, because of recent theoretical advances, the TRI approach can now be proposed as an
alternative, potentially superior, approach to measuring averted HIV infections. The new modelling
work shows that applying several blood tests to each individual blood specimen could reduce the
percent of mistakenly identified recent infections to less than 2 , provided the sample size of the
survey data were sufficiently large [89,90]. Knowing that misclassifications are most likely for
individuals whose immune systems are either extremely effective or have been depleted by long
infection, blood samples identified by the BED as recently infected can be re-tested for avidity (to
screen out those with exceptionally resistant immune systems) and for ART or viral load (to screen
out those with depleted immune systems). Such a combined testing strategy has been shown to
reduce the rate of recent-classification among those infected for more than a year from more than
16% to 1% [71,83]. As applied research to test such a combined strategy in the field goes forward,
we can prepare for its success by considering the TRI approach as a promising measurement strategy

to implement the COD approach to HIV prevention [f,g].

Incidence(time=0) Incidence(time=T)

> time

Y
Inter-survey period, T

Baseline Survey Follow-up Survey

Figure 9: Design for measuring a change in incidence using the tests for recent infection technology.
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To measure the change in incidence over a period, the TRl approach estimates incidence in the
period immediately prior to the baseline and follow-up survey and subtracts the second from the

first (Figure 9). Incidence in each period is estimated as:

U(t)-¢0(
e

Equation 2: Estimator of incidence, |(t) , using test for recent infection technology [79]. U(t): HIV-infected &

Under-threshold; O(t): HIV-infected & Over-threshold; H(t): Not HIV-infected; E[Z'R] is Expected time in
recent state (for those that do progress); and, @ is the odds of those of being in the non-progressing sub-
population.

When comparing incidence rates at the baseline and the follow-up surveys, it is not necessary to
know the value of E[Z'R], and if the odds of non-progression are zero, the statistic becomes simply a

comparison of the ratio of individuals classified as recent to HIV-uninfected individuals in each of the

surveys (Equation 3).

e (1) _UTVH(T)

100) U(0)H(©)

Equation 3: Under certain conditions, the comparison of incidence between two time-points collapses to a
comparison of two proportions. IRR: Incidence Rate Ratio.

Confidence, Time between Surveys and Sample Size Considerations

The preceding sections have discussed provisions that can be taken to safeguard the prevalence
modelling approach and the TRI approach from the systematic biases to which they are inherently
vulnerable. Since both approaches rely on HIV tests from two cross-section surveys conducted at
the baseline and a few years later, it is also important to consider the role of random statistical
sampling error. These errors can reduce the chance that there is sufficient evidence to justify reward
payment, or reduce the amount of the reward, even when HIV infections have truly been averted.

These statistical errors can be minimised by increasing the sample size of the baseline and follow-up
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surveys, or by increasing the interval between the surveys. But both of these remedies are costly:
larger sample sizes are more expensive to implement and longer intervals between the surveys
mean that countries have longer to wait before the results are available, the payment is made and

planning for the next round of interventions can start.

The trade-off is illustrated in Figure 10, where an idealised TRl is used to estimate incidence at the
baseline and follow-up surveys. In principle the same trade-off applies if the prevalence modelling
approach (discussed above) is used instead. In the TRI design, a simple criterion for reward payment
might be the measurement of a statistically significant reduction in the estimated incidence rate (at
the 5% level). In the figure, panels (a) and (c) depict the tradeoff between sample size and survey
interval required to detect an improvement when the true five-year reduction in incidence has been
20percent or four percent each year, while panels (b) and (d) do the same for a true five-year
reduction of 40 percent or eight percent each year.> The red line in each panel shows the trade-off
between sample size and survey interval to assure an 80 percent chance of recording a significant
difference, with a 20 percent chance that an incidence reduction would be missed (i.e. to assure the
test has 80 percent power). Moving to the southeast in any of the four panels, which represents
increasing either the sample size or the survey interval, increases the probability of recording a
significant difference when one has occurred (i.e. increases the statistical power of the test) as
represented by the lightness of the shading. For instance, if incidence is initially 2/100 person-years
at risk (pyar) and the intervention truly does reduce incidence at a five-year rate of 40 percent (panel
d), then a reward criterion with 80 percent power can be achieved with a survey interval of 2 years
and a sample size of ~40,000 individuals. Increasing the interval to 5 years means that only ~10,000
individuals per survey would be required. In populations with lower incidence, larger sample sizes
are required: for instance, if incidence is 1/100pyar and incidence is reduced at a five-year rate of 40
percent (panel b) over a five-year survey interval, then sample sizes of 15,000 would be required to
achieve 80 percent power. Greater sample sizes and/or longer intervals between surveys are
required if the expected reduction in incidence is more modest: for instance, in a population with
2/100pyar incidence and incidence decreases at a five-year rate of 20 percent (panel b), then a
sample size of 40,000 and inter-survey interval of 5 years would not be sufficient to provide 80

percent power. For populations with low incidence where incidence reductions are expected to be

® If the true incidence reduction between two surveys five years apart is 40 percent, we assume that the true
incidence reduction between surveys T years apart would be T * 40/5 percent. This linear interpolation/-
extrapolation of our assumed rate of incidence decline is a compromise between assuming a constant
percentage decline, for which the absolute decline would be largest the first year, and a cascading decline, for
which the absolute decline would be smallest the first year. See Hallett [2009] for further discussion.
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modest (panel a), it is difficult to create a design with sufficient power — for instance, surveys of
50,000 individuals separated by 6 years would be required to generate 80 percent power if incidence
is 1/100pyar and incidence is reduced at a five-year rate of 20 percent. This practical problem can be

addressed by considering alternative reward criteria or “payout functions”.
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Figure 10: Trade-off between time between the survey interval, and the survey sample size to achieve an equal
chance of detecting the reduction in HIV incidence. Panels show statistical power (white indicates close to 100
percent power, and darker shades lower power; the red line is at the power=80 percent iso-cline). The blue
dashed line indicates intervals between surveys of 2, 4 and 6 years. The reduction in incidence is simulated as a
steady decline in incidence, with reductions over 5 years equal to (a,c) 20% or (b,d) 40%.

Criteria for selecting a mutually agreeable payout function

A “payout function” is defined as a rule that determines whether the recipient party in a COD
agreement receives a reward and, if so, what proportion of the total maximum reward is paid. Since
at the conclusion of the COD measurement period the donor does not know the true achievement of
the recipient, but only the estimated magnitude of that achievement based on the two population

surveys, the payout can be based on both the estimated magnitude and on the precision of the
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estimate. Rewarding the estimated size of the improvement provides the desired incentive for the
recipient government and its constituencies to cooperate effectively in reducing HIV incidence, while
rewarding precision assures the donor that the probability and/or the magnitude of the payout will
be on average associated with true improvement, not just with a sampling or non-sampling error of
measurement. One can imagine making the payout a function of achievement in various subsets of
the population, such as improvement among women (an equity criterion) or among high risk groups
(an efficiency criterion), but we set aside these possible refinements for the practical reason that
they would require larger samples or more frequent survey intervals and for the philosophical
reason that improving the broadest possible population average of HIV incidence is consistent with
both equity and efficiency objectives and accords with the COD philosophy of leaving the details to

the recipient.

An unlimited number of possible payout functions can be constructed which reward the size and the
precision of the measured improvement. These differ from one another in a variety of dimensions
among which we focus on four that we think will be important to both the donor and the recipient
of the COD agreement. These are the profiles with respect to the true incidence reduction of (1) the
expected payout; (2) the expected incentive; (3) the probability that a payout occurs; and (4) the

conditional expected payout.

We define the “expected payout profile” of a payout function as the relationship of the average
amount paid to the true reduction achieved in HIV incidence. To construct the expected payout
profile for a candidate payout function, we use the computer to simulate the accuracy of two
population surveys at measuring a true incidence reduction. We perform the simulations over a
range of values for the actual incidence reduction, from a failed HIV prevention which increases HIV
incidence by 20 percent to a highly successful one that reduces incidence by 50 percent. In all cases
we assumed that the incidence at the time of the follow-up survey was 2/100 person-years at risk, or

two percent per year, and that the baseline and follow-up surveys each has 20,000 individuals.

For example, suppose the donor and recipient agree that the donor will pay the recipient the full
amount of the reward if the estimated HIV incidence from the second population survey is less than
that from the first, regardless of whether the difference is statistically significant. Figure 11 displays
the four profiles of this simple payout function for two sample sizes: 10,000 households in panel (a)
and 40,000 households in panel (b). In both panels, the horizontal axis represents the true reduction
in incidence between the baseline and follow-up surveys, with improvements up to a 50 percent

reduction towards the right. Values to the left of zero represent a worsening of HIV incidence up to
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Panel (a). Payout profiles for Rule 1 when survey sample size is 10,000
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Panel (b) Payout profiles for Rule 1 when survey sample size is 40,000
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Figure 11. Four simulated profiles of the payout function which awards the recipient if any measured reduction in incidence
has occurred, regardless of its magnitude or statistical significance. Panel (a) Sample size is 10,000; Panel (b): Sample size is

40,000.
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a 25 percent exacerbation. The first three profiles use the left vertical axis, while the expected
incremental payout uses the right. Each point on each line is generated by 100,000 random draws of
the appropriate number of households under the assumption that the true reduction in incidence

has the value on the horizontal axis.

Because this simple payout rule resembles a weak version of a classical hypothesis test, it is not
surprising that the profile of expected payout for this function displays the classic shape of a
statistical power function, an S-shaped curve or ogive. Because the payout is either all or nothing
(zero or one), the profile of the expected payout function is identical to that of the probability of
payout. (In Figure 11, one of these is superimposed over the other, leaving only three curves in each
panel.) These expected payout functions all display one desirable property: they are monotonically
increasing from left to right, which means that on average the donor will pay out a larger proportion
of the maximum award when the recipient has achieved greater incidence reductions. This feature
of the payout functions is captured by the “expected incentive profile”, or the incremental expected
payout, which in this case is always positive at all values of the incentive reduction, an essential

feature of a COD payout function upon which a donor should insist®.

This payout function displays several other features that may make it desirable to the recipient, but
unacceptable to donors. First, for both depicted sample sizes, and indeed for all sample sizes, the
expected payout profile of this payout function intersects the vertical axis at 0.5. Thus, even though
the recipient has achieved no improvement, or even allowed HIV incidence to increase, the
recipient’s expected reward (as well as the probability of receiving a reward) can be up to 50
percent. Donors may also be uncomfortable with the fact that when the surveys have erred, the
recipient receives the totality of the reward, as represented by the horizontal conditional line at the
top of the graph giving the profile of the conditional expected payout. At a higher sample size, the
chance is reduced that two population surveys would mistakenly measure a decline in incidence
when incidence has actually increased. This is why the S-shaped curves are steeper in panel (b).
However, even at the higher sample size, with an actual increase of 2.5 percent in incidence, this
function would mistakenly reward the recipient the full amount of the prize about 20 percent of the
time. Finally, the hill-shaped incentive profiles in the two panels, though always positive, are

centered on the origin and drop quickly to the right, indicating that the recipient is most highly

* The incentive profile is defined as the slope of, and computed as the partial derivative of, the expected
payout function with respect to the true incidence reduction.

25



rewarded when achieving the initial small reduction in incidence. With the larger sample size, the
incentive profile is so tightly concentrated on the origin that the COD would provide little additional
reward for going beyond a 5 percent improvement and virtually none for going beyond a 10 percent
reduction. By focusing all of the COD incentives on such a small reduction in incidence, payout
function 1 may be unattractive to both parties, who would like to see bigger rewards for big

improvements.

Table 1 lists ten example payout functions starting with the one already described. The table groups
the ten functions into two categories — (i) “Threshold” functions, that pay a fixed amount if the ratio
of the new to the old estimated incidence rate is below a certain level or the change is statistically
significant; and, (ii) “Continuous” functions, that pay in proportion to the estimated reduction in
incidence or, equivalently, in proportion to the estimated number of HIV infections averted up to a
maximum reward. For example, the threshold functions might offer a million dollar prize if the
threshold is reached, while the continuous functions might offer $100 per HIV infection averted up

to a maximum of a million dollars.
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‘ ‘ Payout Function

Threshold 1. Pay if any reduction in measured incidence rate (irrespective of p-value).
Functions 2. Pay if reduction is large (>20%) (irrespective of p-value).

3. Pay if reduction reaches statistical significance at p<=0.05

4, Pay if reduction reaches statistical significance at p<=0.20

5. Pay 100% if p<0.05; Pay 50% if p-value 0.05-0.20

6. Pay 100% if p<0.05; Pay 75% if p-value 0.05-0.10; Pay 50% if p-value

0.10-0.20; Pay 25% if p-value 0.20-0.30

Continuous 7. Pay linearly in proportion to the reduction in incidence (up to a reduction
Functions by half). (See Figure 12)
8. Pay linearly in proportion to the reduction in incidence (up to a reduction

by half), with a bonus if the reduction reaches statistical significance at

p=0.05.

9. Pay convexly (faster return at smaller reductions) in proportion to the
reduction in incidence (up to a reduction by half), with a bonus if the

reduction reaches statistical significance at p=0.05. (See Figure 12)

10. | Pay concavely (faster increase in return at larger reductions) in
proportion to the reduction in incidence (up to a reduction by half), with
a bonus if the reduction reaches statistical significance at p=0.05. (See

Figure 12)

Table 1: Possible “Payout functions” that could be selected ex ante by negotiated accord between donor and
recipient and embodied in the COD agreement which would subsequently govern reward payment as a function
of the estimated incidence reduction or the number of averted HIV infections. Full or 100 percent payment is

assumed to be the same for all functions.
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Figure 12: The shapes of alternative
continuous payout functions described in
Table 1 (functions 7 — 10). The expression
used to generate the curves is:
f=max(0,min(1,(exp(h*((1-RRm)/Sc))-
1)/((exp(h))-1))), where RRm is the measured
incidence rate ratio, Sc is the value of RRm at
which there is maximum payout (here
corresponding to 50% reduction in incidence),
and h is the shape parameter for the curve
(less than zero, the curve is convex; more
than zero the curve is concave; approaching
zero, the curve is a straight line). Values used
for h are -4 (convex), 0 (linear), and 4
(concave).

Figure 13 shows the simulated expected payout profile for the threshold payout functions 1 through
6, while Figure 14 shows them for the continuous functions, 7 through 10. As in Figure 11, the
horizontal axis shows the true reduction in incidence, and the vertical axis shows the mean or
expected payout that would be made on the basis of one of the ten decision rules. The arrows
indicate the regions where the mean payout is too low, because the estimated measure of the
incidence reduction is less than it really was (“Overpayment”), or the mean payout is too high
because the measurement erred in the other direction and exaggerated the country’s achievements
(“Underpayment”). Figures 13 and 14 are constructed for a sample size of 20,000, in between the

10,000 and 40,000 sizes shown in Figure 11.

Payout function 2, which is shifted farther to the right than any of the threshold functions, is a more
conservative strategy, rewarding a country only if incidence is reduced by 20 percent or more. Its
shape resembles that of payout function 1, displayed in Figure 11, but is shifted to the right and
centered on 0.2 instead of on zero. Using this payout rule, a country which does not succeed in
reducing the incidence rate is rarely rewarded even at the smaller sample size of 20,000. But,
another consequence of using the scheme is that some countries that successfully reduce incidence
are under-rewarded (e.g. countries that reduce incidence by up to 20 percent have no more than a

fifty percent chance of receiving the full payout) and this problem is worse at higher sample sizes.

Payout function 3, which is based on a classical hypothesis test using a p-value cut-off of 0.05,
attempts to improve payouts for success, and results in greater rewards for countries with smaller
reductions in incidence without a large increase in over-payment for countries where incidence had
not declined. Using a higher less specific p-value cut-off, as in payout function 4, means that average

payment for these countries rises further, but at the cost of a relatively high expected payment
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when there is no real improvement. Payout functions 3 and 4 share with 1 and 2 the fact that the

recipient would either receive the entire maximum payout award or nothing at all.

Instead of awarding either all or nothing, the payout can vary in amount with the level of significance

reached, as in payout rules 5 and 6. These represent a compromise between using higher and lower

p-value cut-off values.

100

Expected pay-out (% of full amt)

25 50
Reduction in Incidence (%)

Figure 13: Relationship between true reduction in incidence and the expected payout under a range of threshold
payout functions (1-6) at a sample size of 20,000 (see Table 1). With each of these functions, there is scope for
over and under-payment. For instance, at point A, where incidence actually increases but there is a still a pay-
out to the country, there is ‘over-payment’ on average; whilst at point B, where incidence declines but the country
receives less than the full payout, there is ‘under-payment’ on average. The area to the left of the vertical dashed

line is always the region of over-payment, but the region of under-payment is determined by the payout function
being used.
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Figure 14: Relationship between true reduction in incidence and the expected payout under a range of
continuous payout functions (7-10) at a sample size of 20,000 (see Table 1). As in Figure 13 there are regions of
average over and under-payment with respect to whether incidence is actually reduced. The area to left of the
vertical dashed line is always the region of over-payment, but the region of under-payment is determined by the
payout function being used.

Figure 14 shows the simulated relationship between the actual reduction in incidence and the
expected payout profile for each of four continuous payout functions (function 7-10 in Table 1). With
a linear increase in payout with measured reductions in incidence (function 7), the payout is typically
lower than the payout on the basis of a classic hypothesis test (function 3). With a bonus associated
with statistical significance (function 8), the expected payout is boosted for small and moderate
incidence reductions with little increase in the expected overpayment when incidence did not really
decrease. If the rate of payout is highly sensitive to small reductions in incidence (function 9) there is
a substantial chance of over-payment and a diminished incentive for reductions in incidence greater
than ~25 percent, since the expected payout rapidly reaches its maximum possible value. If the rate
of payout is insensitive to small reductions in incidence but returns greater payouts for larger

reductions in incidence (function 10), there is little risk of over-payment and no saturation at larger
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reductions. However, with this function, the expected payout, as a proportion of the maximum

payout, overall is substantially reduced.

The choice of whether a payout function should be ‘concave’ or ‘convex’ (Figure 12 and functions 9
and 10) should be made carefully, as the effort-to-returns relationship in controlling infectious
diseases is not linear, as it might be for another health intervention. First, program effort aimed at
reducing the average number of new infections generated by each current infection (the basic
reproductive rate, Ry, of the epidemic) is likely to suffer from diminishing returns, as the program is
expanded beyond the early adopters to the increasingly recalcitrant. Second, the translation of a
reduced basic reproductive rate into a reduction in prevalence/incidence depends on the baseline
epidemiological context. Depending on the value of Ry and the epidemic context (shape of the curve
in Figure 3), large reductions in incidence or prevalence could be generated by small changes in Ry,
or small reductions could be generated by large changes. Further this relationship evolves over time
and could differ by the type of intervention, and it is difficult to determine the nature of this
relationship with the amount of information typically available in most of the countries with large

HIV epidemics.

There are two reasons that donors will prefer the continuous payout functions to the threshold ones
(1-6 in Table 1). First, when population survey data generates an estimate that HIV incidence has
declined, when it really has not, the continuous functions produce only small expected payments to
the country, whereas the threshold functions generate either the entire payment (for functions 1-2)
or large fractions thereof. Second, the continuous payout functions offer a less concentrated
expected incremental payout profile which is more likely to encourage the recipient to maximize
incidence reduction, rather than only to aim for a target or, worse yet, to give up because the

requirement for a payout seems unreachable.
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Figure 15: Incentive profiles for payout functions 2 through 10 at samples sizes 10,000 and 40,000 (see Table 1).
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This second reason that donors might prefer continuous payout functions is illustrated in the four
panels of Figure 15. The top two panels, panels (a) and (b), display the incentive profiles of the
threshold payout functions 2 through 6, for sample sizes of 10,000 and 40,000, respectively. The
bottom two panels show the incentives for the continuous payout functions 7 through 10, again for
the two sample sizes. (The incentive profile of the first payout function is displayed for both sample
sizes in Figure 11.) Comparing panels (a) and (c) for the smaller sample size with (b) and (d) with the
larger one, we see that all of the threshold payout functions and the three continuous functions that
include a bonus for statistical significance become more peaked, and therefore more concentrated
on a limited range of incidence improvements, because increasing the sample makes them more
discriminating between success and failure. If the donor’s objective is to spread the incentive
equally across a range of improvements from zero to fifty percent, this objective is best achieved

with payout function 7 and a larger sample size.

Adding the bonus for statistical significance in function 8 increases the incentive for smaller
improvement in comparison to function 7, but lowers it for larger improvements. Making the
payout function convex as in function 9 looks like a bad idea, since it further concentrates the
incentives on small improvements at the expense of reduced incentives for large improvements and

an increased expected payout when improvement has not really occurred.

The last payout rule on the list, function 10, is a continuous concave function of measured
improvement with a bonus for statistical significance. At the smaller sample size in panel (c), this
payout function reduces the expected over-payment when there has been no true improvement
while shifting most of the incentive to larger levels of true incidence reduction. The peak incentive
for function 10 is at an incidence reduction of about 35 percent. At a sample size of 40,000, as
depicted in panel (d), function 10’s incentive profile resembles the back of a two-humped camel,
with incentives concentrated first around a 12 percent reduction in incidence and then around a 40
percent reduction. This interesting profile might be agreed upon by the donor and recipient as an
alternative to function 7 if they are not only unsure of how much incidence reduction can reasonably
be achieved, but also wish to offer a much bigger expected payoff for each percentage reduction

achieved beyond about 30 percent.

Once a payout function and sample size have been agreed to, the recipient country which aims to
maximize its expected net benefits from the COD agreement would set the ‘Marginal Expected
Payout’ equal to what it believes to be the ‘Marginal Cost of the Effort’ required to further reduce
incidence. Suppose the incremental cost of decreasing incidence one more percentage point is

constant and equal to 0.01 of the maximum award, or US$10,000 if the maximum is one million
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dollars.> Then the net COD-benefit-maximizing reduction in incidence can be read from each of the
incentive profiles in Figure 15, by identifying the point where a descending marginal expected
payout function intersects from above a horizontal line constructed at the value 0.01. For the
functions and sample sizes in Figure 15 and assuming the value of the recipient’s prevention effort
per point of percentage reduction stays constant at one percent of the prize, the COD-benefit-
maximizing reduction in incidence is between 30 and 45 percent in panel (a), between 20 and 30
percent in panel (b), between 30 and 55 percent in panel (c) and between 20 and 50 percent in

panel (d)

This exploration of the incentive characteristics of the ten candidate payout functions suggests to us
that donors will prefer a payout function to be continuous like function 7, possibly with either a
bonus for a statistically significant improvement and as in function 8, or concavity as in function 10.
As specified by Figure 12 and displayed in panels (c) and (d) of Figure 15, concavity limits the
expected payout when incidence has not really declined and offers the highest incentives for the
greatest achievement. A further advantage of payout function 10 is that, more than any other
function considered here, it attenuates the incentive to the recipient to reduce the sample size in

order to increase the chance of a payout even when no real improvement has occurred.

Corruption, Collusion, Capture, Competition and Unintended Consequences

A frequent objection to the COD approach is that COD prize money, once awarded, might be stolen

by government officials in the recipient country. In the words of Birdsall, Avedoff and Mahgoub:

COD Aid maximizes the recipient’s discretion in using funds, making it virtually
impossible for funders to ensure that COD Aid payments are used only for legitimate
public purposes. But this is fundamentally true of all foreign aid. Even the most
detailed monitoring of spending on traditional aid projects cannot guarantee that
the recipient country is not taking advantage of the increased resources to release
other funds for inappropriate uses®. The risk that COD Aid might encourage waste
and corruption can be mitigated by establishing standards for public financial
responsibility as a condition of eligibility [- the same same standards relied upon by

> Since the COD approach assumes that all costs of HIV prevention inputs and activities are financed from
other donor or national sources, the cost function whose first derivative defines the COD-relevant marginal
cost is the cost function for empowering and motivating the recipient country agents whose official or
unofficial duties can influence the effectiveness of those already funded activities. With the promise of the
COD payment, these agents might exert more effort in already planned and funded activities, might more
successfully coordinate to achieve synergies among diverse activities, or might exercise their ingenuity to
invent more effective activities than the central planners could ever have imagined or programmed.

® For example, a recent study finds that on average recipient countries adjust to each dollar increase in
development assistance for health by reducing by a full dollar their tax-financed domestic spending for health
(Lu et al. 2010).
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the budget support assistance programs so popular with European donors and the
World Bank]. Or, funders can accept the risk and rely on the improved assurance
that, regardless of how the money is spent, progress has been achieved. [12]

Furthermore, some uses of the COD payout money which might be categorized as fraud by the
inflexible rules of a specific donor, could instead be viewed as laudable examples of using aid
resources to transparently motivate and reward key local contributors towards achieving the desired
development objective, here a reduction in HIV incidence’. For example, earlier in this paper we
suggested that the recipient government, as part of the launch of a COD for HIV prevention contract,
might decide to publicize an offer to fund construction of a football stadium in the towns with the
best performing municipal HIV prevention programs. For donors interested in furthering HIV
prevention and aware of the impossibility of assuring that donor money never finances illegitimate

expenses, this added flexibility of the COD approach will be an attractive feature.

To assure that COD aid rewards honestly measured HIV prevention, a COD program for HIV
prevention must include strong safeguards against non-sampling sources of error, especially those
that might be intentionally introduced by people who collude in hope of garnering some of the
promised reward for themselves or their clients. In a recent study of the results-based assistance
offered by the Global Alliance on Vaccines and Immunization (GAVI), the authors report that the
estimates of vaccination achievement submitted to GAVI by recipient governments were frequently
larger than the authors’ own estimates of vaccination achievement derived from population surveys
in the same country [91] The COD agreement signed between donor and recipient must specify
sufficient safeguards to assure that the donor’s proffered reward motivates people to work hard on

HIV prevention, rather than on manipulating the measurement of HIV incidence.

The specific arrangements which will satisfy a given donor in a given context will vary with the
strength of local statistical institutions and local governance. In some countries, the population
surveys can be conducted by national firms with external audit. In others, where local statistical
agencies either lack the internal auditing checks to assure data reliability or might be damaged by

the unaccustomed pressure imposed by the COD arrangement, the surveys can be outsourced to an

7 The economic optimality of some form of side payment is particularly apparent in the pursuit of a global
public good like HIV prevention. Since no individual reaps more than a small fraction of the benefits of his or
her HIV prevention enhancing efforts, financial and non-financial rewards serve to “internalize the positive
externalities” of their socially desirable contributions. COD aid used to reward individual contributors to the
COD objective, can be compared to conditional cash transfer programs which similarly internalize positive
externalities. However, in contrast to the minutely planned, top-down rewards of a conditional cash transfer
program, the COD approach leaves it to the recipient government’s representatives to seek, perhaps through
trial and error, a set of rewards which best advance the COD contract objective.
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external firm. Whoever conducts the survey, its design can incorporate certain checks and balances

to help control for systematic bias.

For example, the baseline and follow-up surveys could be conducted independently of the national
surveillance efforts, minimising the chance of the selective inclusion/exclusion of clinic sites that
generates an artificial impression of greater prevalence declines. As a further check, dummy
variables could be created in the dataset that represent the dates of data collection/data entry and
identifiers for the personnel doing the work. If the data has been collected and entered without any
systematic error (include deliberate tampering), then the average rates of data collection and entry
(forms per day) should be equal for all personnel, and the variables reflecting date and personnel
should not be correlated with HIV prevalence. In addition, within-interviewer variation in HIV
prevalence test results should be similar across all interviewers (an interviewer using her own blood
for the tests would be detected by this test). A simple check could be made to verify this (e.g. logistic
regression of HIV positive against the dummy variables), and the analysis could only be conducted

subject to the data “passing” the test (i.e. p>0.0.1, for no strong evidence of systematic error).

The advantages of the prevalence modelling method include its use of hard outcomes obtained from
biological markers (indirectly HIV transmission patterns) rather than relying on reported sexual
behaviour or programmatic activity [23]. The main data requirement — HIV test results in cross-
section at the baseline and follow-up surveys — is straightforward to collect and the technology for
reliable HIV testing is proven. Sample sizes for the baseline and follow-up surveys of 8,000-20,000
are usually adequate. The main disadvantage of this approach is the complexity of the process
needed to interpret trends in prevalence, which could lead to disputes. The mathematical modelling
method can be geared to be conservative, so that the threshold for finding evidence for behaviour
change affecting the course of the epidemic is raised, by manipulating the model structure and
parameter priors to maximise the natural declines in HIV prevalence. Alternatively, the model can be
geared to be more generous by doing the opposite. But, the behavioural and epidemiological data
are insufficiently precise to be sure that model priors are centered on ‘neutral’ territory (ie. true
values of parameters). Another disadvantage of the prevalence modelling approach is the strong
influence on the conclusions drawn of the information entered about HIV prevalence early in the
epidemic before the surveillance system was set up. Informative prior distributions are usually
derived from the subjective views of experts, perhaps supplemented by historical data recorded in
the US Census Bureau International Population Database [92]. This makes the analysis vulnerable to
gaming, unless the analysis is formally repeated under a range of assumptions about prior limits, or

the expert opinion can be sourced reliably so that is, on the one hand, protected against capture by
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recipient interests, and on the other perceived by all parties, including the recipient, to be fair and

objective.

In some contexts it may be possible to engage the forces of competition in order to further stimulate
HIV prevention effort. But safeguards must assure that introducing competition does not stimulate
collusion and capture more than real HIV prevention effort. The principles described for finding
evidence for incidence reductions are generic, so they can be applied to any country in the same
manner. It follows that they could be applied to different regions of the same country. This may be
an attractive option in large countries with semi-autonomous states, such as Nigeria, where the
donor could be the federal government, perhaps financed by external partners, and the recipient the
state government. In that case, the statistical power calculations and key results could be applied to
each state of Nigeria, assuming independence between the states, and the payouts calculated
separately. A concern for fairness would argue for adjusting each state’s payout function so that a
state with high prevention costs is rewarded for a less ambitious incidence reduction. However,
adjusting the functions to the specifics of each state would be complex and vulnerable to charges of
unfairness similar to those the procedure was intended to avoid. On the other hand, a concern to
prevent the most Nigerian infections with a given aggregate COD award would argue for a single
payout function, so that states with lower costs per HIV infection averted contribute correspondingly
more averted HIV infections to the national total. Using a single payout function for every state
would also have the advantages of simplicity and transparency, two criteria which might be more

important than any others for the domestic and international acceptability of the COD approach.

If the surveys are organised at a national level, it would be important for them to afford the same
statistical power to each state. This would likely incur extra costs, since a nationally-representative
sample can use fewer sites (clusters) per state for the same overall statistical power. Alternatively,
each state could organise its own survey, although this could incur a multiplication of fixed setup
costs. In this situation, the payment to each state could be independent of those to other states, or
states could compete for shares of a total reward budget. Competition for shares of a fixed
maximum budget has the advantage of limiting a donor’s total exposure and might achieve greater
overall incidence reductions, due to greater effort by each state. However, to the degree that it
reduces interstate cooperation for case detection and other key public health measures,

competition might worsen overall national performance.®

® To save on the costs of powering many state-specific surveys, information could be shared across state
boundaries. That is, state surveys of smaller samples sizes would be acceptable if the data between
neighbouring states is ‘pooled’. There are several mathematical methods for controlling the extent to which
information is averaged among neighbours, the most common of which is Bayesian smoothing 93. Elliott P,
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As with any pay-for-performance program, the COD approach might produce unintended
consequences. For example, the existence of a COD contract for HIV prevention, with no
comparable program for childhood immunization, might induce the recipient government to
reallocate resources away from immunization and towards HIV prevention. Since the possibility that
an aid program for one objective might compete with or crowd out unassisted programs with
different objectives has always been a concern, it should not be an insuperable impediment to a
COD for HIV prevention contract. Measures that can be taken to protect existing programs can
include (1) maintenance of existing more traditional, input-financing, assistance to other programs;
(2) keeping the maximum COD payment small in relation to the total HIV prevention budget; (3)
including provisions regarding minimum performance of other health programs in the COD contract;
and (4) reliance on the competence of the national ministry of health and/or the strength of the
constituencies for other programs. Furthermore, since the COD approach does not specify how HIV
prevention is to be achieved, it might stimulate more government expenditure on programs that the
government deems to be important contributors to HIV prevention (e.g. road maintenance) than

would a traditional input-oriented HIV prevention assistance package.

Since the earliest recognition that HIV is transmitted by sex and intravenous drug use, health experts
have recognized that public health campaigns intended to stimulate public interest in preventing the
spread of HIV infection might lead to unintended consequences, such as stigmatization or even
persecution of those perceived to be members of groups likely to transmit [94]. To prevent this
possibility, the United Nations Joint Programme on AIDS has published many guidelines on best
practices for national AIDS programs to assure they do not stigmatize the HIV infected or those at
most risk for contracting or transmitting the epidemic [95]. Some fear that a country that enters
into a contract designed to reward a reduction in the number of new infections might, in its zeal to
win the COD prize, carry out prevention programs which would infringe the human rights of its

population.

The infringement of human rights for any reason is a cause for international concern. Just as the
COD approach is unable to claim credit for HIV incidence reductions (due to the intentional absence
of a rigorous evaluation design), the approach can never be shown to have caused any human rights

infringements that occur during the life of the COD contract. Donors concerned about the possibility

Martuzzi M, Shaddick G (1995) Spatial statistical methods in environmental epidemiology: a critique. Stat
Methods Med Res 4: 137-159. This method is typically used to produce estimates of incidence of a rare disease
across small areas, where the sampling error (noise) would otherwise dominate. Furthermore, because
smoothing tends to reduce the measured performance of the best performing states and increase that of the
worst performing, its use would reduce the effect of a given state’s effort on its payout, thereby undermining
the objective of the COD approach.
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that the COD contract they sponsor might be blamed for human rights abuses, or simply desirous of
preventing such abuses, can impose eligibility requirements on recipient countries, such as human
rights ombudsmen or civil-society watchdogs. Furthermore, they can include in the contract a
provision that overtly discriminatory or stigmatizing behaviour towards the HIV-infected or the most

at-risk populations, certified by a third-party, will annul the offer of the COD payment.

For any aid approach, each donor must weigh its desire to assist a recipient country against its
concern that the country’s governance structures are insufficient to support that kind of
engagement. At one extreme, for some donors only traditional top-down, donor-executed
paternalistic aid arrangements will be acceptable modes for helping some recipients. However, for
donors and recipients able to engage in more mature relationships, such as those involved in
recipient budget support, the COD approach offers an additional aid instrument which promises to

improve HIV performance.

From policy discussion to pilot

This paper demonstrates the statistical and computational feasibility of paying a country “cash-on-
delivery” (COD) for an estimated reduction in HIV incidence achieved between two population-wide
surveys. One of the two methods for estimating incidence reduction, the prevalence modelling
approach, uses existing models and data and is ready to be piloted today. The other method, based
on Tests for Recent Infection, is rapidly approaching readiness for field use, and might be usable
within a COD agreement launched within the next year or two.9 Use of either of these
measurement approaches, in combination with one of the better performing payout functions
analyzed in this paper, would enable a donor and recipient government to improve the motivation
of the agents working on HIV prevention, perhaps sufficiently to dramatically reduce HIV incidence

within a few years.

Some ask whether a donor’s proposal of a COD arrangement to a recipient country implies that the
donor doubts the sincerity of the recipient’s desire to achieve the stated COD objective, here HIV
prevention. But in view of the many alternative available sources of traditional foreign assistance,
few of which demand any accountability for development results, a government AIDS program

official who is insincere about HIV prevention could simplify his life by ignoring this aid modality

® The blood samples used to estimate baseline prevalence in the prevalence modelling approach could be
conserved. If the methods for the test of recent infection approach become available before the follow-up
survey has been completed, the TRI approach can be applied to samples from both surveys and its results
compared to those of the prevalence modelling approach on the same population.
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altogether. To the contrary, it seems likely that the recipient government official who will be most
interested in a COD-for-HIV-prevention contract is one who is intensely interested in improving HIV
prevention, aware that effective prevention requires the concerted engagement of many actors at
all levels of government and civil-society and frustrated by his inability to get the devoted attention
of these other actors. Such a visionary leader will see a COD contract as an opportunity to engage
these others by offering them pieces of the COD payout, either in kind (such as the football stadiums

mentioned above) or in the form of financial support for their other underfunded priorities.

While space constraints have limited our treatment of the political economy arguments in favour of
a COD approach to foreign assistance in general and HIV prevention in particular, we are aware that
more discussion of such arguments for and against the COD approach would be required before such
a novel mechanism could be deployed for HIV prevention. Research to strengthen the technical
foundation of COD will contribute to the policy debate to the extent that it relieves concerns about
the approach’s vulnerability to the choice of the payout function or to sampling or non-sampling
errors. Among non-sampling errors, donors and the international public health community,
including its members and other concerned citizens within potential recipient countries, will be most
concerned that the COD approach could be corrupted through collusion among the measurement
agency staff or through capture of the body of experts that will approve the estimates of HIV

incidence that determine the size of the COD payout.

Further research on payout functions could precisely define the concept of an “optimal payout
function” and demonstrate how that optimum could be identified in a specific epidemiological and
health systems context. Assuming that the donor’s objective is to motivate the recipient to achieve
the maximum incidence reduction per dollar of COD reward paid, the optimal payout function from
the donor’s perspective will depend upon an ex ante assessment of how difficult it will be for the
recipient to achieve any given incidence reduction over a given number of years between the two
surveys. Formally, this assessment amounts to a judgement or econometric estimate of the shape of
the recipient’s incremental cost function for HIV incidence reduction.10 Research could
demonstrate the derivation of an optimal payout function in a specific real-world country, though its
empirical validation would have to await that function’s deployment as part of a real COD program

in that country.

Vulnerability of the COD to sampling errors depends on the sample size, the survey interval and the
choice of the payout function. By choosing a continuous rather than a threshold payout function,

the COD program aligns the interests of the recipient more closely with those of the donor in favour

% Note 5 discusses the concept of “incremental costs of HIV incidence reduction” in the COD context.
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of achieving the largest possible reduction in HIV incidence, rather than focusing on a target
reduction. Though the COD donor will typically set an approximate maximum budget for the
baseline and follow-up surveys, the number of individuals which can be surveyed for that budget will
depend on the unit cost per individual. The recipient country can help to assure a large sample size
by encouraging the most efficient local survey firms to bid their lowest prices on the survey contract.
Further work on the COD can develop a model bidding document which facilitates efficient sampling
by requesting prospective bidders to propose a sample size for a given budget rather than the more

common approach which is to propose a budget for a given sampling problem.

Further research can also explore the degree to which repeating the COD agreement several times in
the same population, with the follow-up survey from the first agreement serving as the baseline for
the second agreement, can reduce the vulnerability of the COD to sampling and non-sampling
errors. For example, it may be the case that an under-estimate of incidence reduction and the
associated underpayment at the end of a first agreement would be offset on average by over-

payment on the second agreement, and vice-versa.

Further research would also be useful on ways to design and manage a survey in order to minimize
non-sampling errors, including collusion among survey or information management staff or capture
of the technical experts for the purpose of defrauding the COD agreement. For example,
randomized re-interviewing of already sampled individuals might be important for dissuading those
who might try to cheat. In situations where multiple states are competing for shares of a single COD

reward budget, perhaps state survey staff could be randomized to states other than their own.

While the COD approach intentionally avoids the impact evaluation paradigm, the approach could be
evaluated in a given country context if the follow-up and baseline surveys and the incidence
measurement approach were replicated in several regions of a country, only some of which were
randomly assigned a COD agreement with a payout function. We hesitate to propose such an
evaluation because of the large sample sizes and/or long survey intervals that would be needed to
find statistically significant differences in HIV cases averted between the two arms of such an
evaluation. Instead we believe that, in a country with a serious HIV/AIDS epidemic, the successful
implementation of a COD for HIV prevention program complete with payouts being awarded for

incidence reduction would be sufficient evidence of the program’s worth.

If the idea of using a “cash-on-delivery” reward for HIV incidence reduction catches the imagination
of one or more donors and if countries where many of the HIV prevention input and activity budgets

are already financed are interested in reaching for this prize, then we believe there would be much
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to gain from piloting this idea in a country, or perhaps in a region of a county. The COD approach to
prevention could also be piloted with another disease, such as malaria, where the challenge of
measuring averted cases or of attributing them to specific interventions is also an impediment to
results-based public health programming. Just as in candidate sectors outside of public health,
wherever there is awareness that the agents of program success lack motivation to exert sufficient
coordinated productive effort towards the program’s goals, the cash-on-delivery approach holds the
promise of enhancing the effectiveness of government programs and of the existing bilateral and

multilateral aid that supports them.
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Supplementary Appendix 1. Details Of The Simulation Model Used To Generate Counter-Factual

Projections.
(Based on the methods in Hallett et al. Epidemics, 2009)

Following others [31,36,47], the model represents the heterosexual spread of HIV in a sex and sexual activity
stratified population. The model is described in the following four sections: (i) Differential equations; (ii)
Calculating the force of infection; (iii) Changes in sexual behaviour parameters; (iv) Model outputs; and, (v)

Fixed parameter values.

(i) Differential equations

The model is defined by a set of ordinary differential equations which are solved numerically using custom-
made software developed by the authors. The state variables are given by st,l : s is the infection-status (1=

susceptible; 2= acute infection; 3,4,5= latent infection; 6= pre-AIDS; 7= AIDS; 8=pre-AIDS and will receive
antiretroviral therapy (ART), 9= on ART), k is sex (1= female; 2= male) and / is the sexual activity risk group (1=
(highest risk), 2 and 3= (lowest risk)). Sexual activity group 1 represents those with high numbers of casual
partners; group 2 represents those with long-term casual partners; and, 3 represents those with in stable
spousal partnerships. Groups 1 and 2 together are classified as the ‘higher risk groups’. In this document, the

® symbol indicates the sum of the state variable across that dimension, and X (without subscripts) is the sum

across all strata (equivalentto X_,).

The ordinary differential equations describing changes in the state variable over time are as follows,

and the course of HIV infection is illustrated in Figure 1 in the main text.

Latent infection is split into three compartments so that the overall distribution of survival from HIV
infection to death in the absence of treatment approximates a gamma distribution, which is indicated by the

available data from resource-poor settings (Figure S1).
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Here, the rate of individuals ceasing sexual activity is 1 (mean duration sexually active 1/ M ); in the absence

of AIDS, the population grows exponentially at a rate ¢ ; the fraction of men and women starting sexual

activity in each sexual activity group is @, , (such that ¢k'_ =1); the force of infection for individuals in each

sex and sexual activity group is 4, |, which is defined below.

The fraction of individuals progressing to pre-AIDS that will start treatment is given by a(t) , and this changes

over time in the following way:

a(t) = max[o’ min(amax ' arate (t - astart ))]

where, Q. is the maximum level of coverage achieved, a,. is the time in the simulation when ART

coverage starts to increase and &, is the increase in coverage.
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Figure S1: Net survival distribution
with HIV. The yellow line show the
best fit of the gamma distribution
to the observational data, reported
by Marston et al.[96]. The green
and blue lines, respectively, show
the limits of the prior distribution
for mean survival with HIV
infection, in the absence of ART.

In the model, it can be assumed that individuals do not change sexual activity group during their

lifetime and that the proportion of individuals entering each group is constant over time (this assumption is

labelled ‘no replacement’). Over the course of HIV epidemics, some sexual activity groups may suffer greater

AIDS-related mortality than others, leading to changes in the overall distribution of risk in the population. The

model can counteract that change and allow individuals to move between groups in such a way that the

fraction of adult men and women in each risk-group remains constant over time (this assumption is labelled

‘with replacement’). The replacement of individuals in the higher risk groups is simulated in the following way:

forl =1,2:
Gk,l = ¢k,| Xk',. - Xk.,l

S

s 1,1+1
k,l — Gl,l

11+1
S S S
> Xy Hy,

S S S
X = X + Hy,

This adjustment is made first for | =1 and then for | =2. G, , Since differential loss will always be grater

from group 1 compared to 2 and 3, and group 2 compared to group 3, Gk,l is always positive.

(i) Calculating the force of infection

The force of infection is calculated on the basis of the rate at which individuals change sexual partner, HIV

prevalence among their sexual partners, the number of sex acts in each partnerships and the use of condoms.
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Individuals in each sex and sexual activity group form partnerships at a set rate: c, , which is
parameterised by a mean rate of partner change for that gender (C, (t)) and two parameters that give the
relative partner change rate for those in the highest (@, ,) and next-highest (@, , ) risk groups relative to

those in the lowest risk group (so that @, , = 1). The partner change rates for each group are thus calculated

as:
c Cy
-0, —
kI kI
z¢k,lwk,l
I
kal is the total number of sexual partnership offered by individuals in that gender and sexual
activity group:

Wk,l =Gy Z xks,l

Men and women form partnerships so that a fraction, &, of their partnerships are directed only to those in
those of the opposite gender in the corresponding sexual activity group. The rest are distributed randomly

among those of the opposite gender, according to the number of partnerships available. For men and women,
. is the fraction of partnerships that individuals in the k" gender and It activity-group form with
P

individuals of the opposite gender in the |t activity group (the prime denotes that the index relates to those

of the opposite gender).

W .
Oeir = 5||.+(1—8)—k"
v ’ W,. .
§|" Kl
Lifi=j

Here, &, | is the Kronecker delta: 0 ; ={0 i
: : if i

To ensure that the total number of partnerships formed by men and women are consistent, the

following correction is made:
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In this way, 6 determines the extent to which the pattern of partnership formation is determined by the

parameters estimated from men’s reported sexual behaviour.

In partnerships between individuals in sexual activity groups land |', the number of sex acts and the
level of condom use is determined by whether the partnership is classified as ‘regular’ or ‘casual’. If the
partnership is formed among individuals from the two riskiest groups, it is classified as ‘casual’, otherwise it is

classified ‘regular’. Let L denote whether a type of partnership is casual or regular, so that:

1, max(l,1") <3
2,otherwise

The number of sex acts in casual and regular partnerships is, respectively, N; and N, ; the fraction of sex acts

in which condom are used in casual and regular partnerships is, respectively, (;and (,

The force of infection is calculated as:

Ar =Gy Z(pk,l,l’(l_ - pk',l’)(liqL)nL )
T

Here, pk.,l. is the average chance of transmission per sex-act in sexual partnerships formed with individuals of

that sex and sexual activity group. It depends on the prevalence and the stage of infection of those in that

group in the following way:

9
Zﬂk',s ke
p = 5=1—.
k'l Xk.’l.
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The chance of transmission per sex acts from individuals of sex Kin disease state s (f\ ) is specified with
three parameters: the average rate of transmission from individuals with latent infection, averaged across men

and women ( A ); the relative rates of transmission for each stage of disease relative to latent infection (Kg);
and, the relative chance transmission from females versus transmission from males (7;: 7, = 1, by

definition). The values for K, are estimated using observational data from rural Rakai. However, it possible

that the assumed rate of transmission from individuals with pre-AIDS and AIDS has a large influence of the size
of declines in HIV prevalence [97]. Since the there remains uncertainty in the extent to which the rate of

transmission increases as symptoms develop and because this may be associated with decreases in coital
frequency or the rate of forming new partnerships, an additional parameter is introduced, h, which allows the

relative rate of transmission from pre-AIDS and AIDS individuals to be adjusted independently of rate of the

transmission at other stages.

ﬂk s ﬂkKs ﬁ 2 S= 112!3541559
' 1+ 7,

B —hzx|p—2—| s=678
k,s k™s 1+7Z'k 10

(iii) Changes in sexual behaviour parameters

Three sexual behaviour parameters are allowed to change in a piece-wise linear fashion; the mean rate of
partner change for men, the mean rate of partner change for women, and the fraction of sex acts in which
condoms are used in casual partnerships. These parameters all change at the same time, and this is

parameterised by: (i) the time at which the changes in behaviour start, £ ; and, (ii) the time it takes for the
behavioural parameter to reach its new value, F . The eventual relative change in the mean rate of partner

change for women and men are denoted, respectively: Al and Az- The relative change in condom use in

casual partnerships is denoted: A3 . Thus:

Time (1) Mean partner change rate: women | Condom use in casual partnerships
and men
t<d; (_:k(t):(_:*k qz(t)=q*2
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Where a * indicates the initial value for that parameter.
(iv) Model outputs

The key output from the model for comparison to data is the prevalence time-series. This is calculated by
defining the calendar year when the simulation is assumed to start (To) and recording prevalence, in the way

shown below, at the mid-point of each subsequent year.

9
2 X
=2
p(t+T,) ===
X..
However, although the model outputs simulated prevalence in the general population, it must be compared
with data collected in ante-natal clinics (ANC). It has been shown that there are usually differences between

prevalence measured in the general population and at the ANC [61], so the model output is calibrated to

represent ANC prevalence.
p(t) = @@ (p (1) +d)

Where @ is the cumulative distribution function of the standard normal distribution and d is the ‘calibration
constant’ parameter that is held constant within one simulation but can be varied between simulations (see

next section).

Numbers of new infections in the period 1995-2008 are also calculated. The number of new infections
in the simulation model is rescaled so that the denominator population matches the estimated population size
and projected growth of the country of interest to provide consistency between derived estimates and those
from other sources. Preliminary investigations showed that the size and the growth rate of the simulated

population do not substantially affect prevalence or incidence rates. The population size in year 1995 is
POp, g5, and the growth rate (assumed constant) in the period 1995-2008 is v . The number of new

infections is then calculated as:

(047, = (PP )exp(v;(t ) WRCRERC
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(vi) Fixed Parameter Values

Values of Parameters That Do Not Vary Between Simulations

Relative rates of transmission in the different stages and the time spent with acute infection are based on
observational data from rural Uganda [59]. Durations of pre-AIDS and AIDS are based on a meta-analysis of
survival rates in resource-poor settings [98]. In the model, individuals entering the pre-AIDS state are assumed
to have a CD4 cell count that has decreased below 200 and are developing symptoms of immune-suppression.
A meta-analysis [98] indicates that survival of infected individuals from the time when their CD4 cell-count is
equal to 200 is approximately three-times as long as for patients with a CD4 count less than 200. Studies in
resource-poor settings show that median survival for patients with CD4 counts below 200 is approx 1 year;
therefore, we assume that the same relationship holds for resource-poor settings and estimate median
survival for those with CD4 cell counts equal to 200 as 3 years. This three year period includes time spent in
pre-AIDS and AIDS states. The same meta-analysis also indicates that mean survival time from developing AIDS
to death is approximately 1 year; we therefore assume that average time spent with pre-AIDS conditions is 2
years. Duration of latent infection is estimated through fitting to reported rates of net HIV-associated mortality
in resource-poor setting [96], subject to the constraint of durations of pre-AIDS and AIDS already discussed
(Figure S1). The duration with pre-AIDS for those individuals that will receive ART is based on another
modelling study focussed on the delivery of treatment relative to disease progression in Africa [99]. Survival on
ART is based on extrapolating observed first-year mortality rates for individuals in resource-poor setting

starting treatment [41,100].
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Parameter Value Reference
Ratio of HIV transmission male-to-female versus female-to- T, 2.00 [101,102]
male
Relative chance of HIV transmission (versus with latent K 11.4 [59]
1
infection): acute infection
Relative chance of HIV transmission (versus with latent K = Kg 3.29 [59]
infection): pre-AIDS
Relative chance of HIV transmission (versus with latent K, 6.14 [59]
infection): AIDS
Relative chance of HIV transmission (versus with latent Kq 0.14 (23, 24: Assuming 50-100 viral
infection): on treatment copies per mm3)
Mean time with acute infection 1/0. 5 [59]
2
months
Mean time with pre-AIDS, and will not receive treatment ]/66 2 years [98]
Mean time with pre-AIDS, and will receive treatment 1/68 2 [99]
months
Mean time with AIDS ]/0-7 1year [98]
Mean time on treatment ]7/0-9 10 years | [100]
a 2003 [103]

Year when ART first becomes available,

Table S1: Model parameters that have fixed values.

Prior Distribution for Parameters That Vary Between Simulations

The location of priors for aspects of sexual behaviour relating to the individuals (mean rates of partner change,

condom use in casual partnerships), is informed by data from the surveys, where specific information is not

available, from other cohort studies, not necessarily local to that target setting [29,104]. The ranges of prior

distribution is expected to extend beyond the sampling uncertainty in these surveys, so credible limits for
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some sexual behaviour parameter values may be defined by examining the variance between population sub-

groups within the survey.

Priors for parameters relating to the higher order properties of the sexual partner network (sizes and
relative rates of partner change in the sexual activity groups, balancing, mixing and replacement) can be

agnostic, that is uniform distribution over the entire range of feasible values.

The location of prior for the rate of transmission during latent infection reflects observational data
from rural Uganda [59], but gives greater support to higher values than indicated in that study. This is done in
recognition of two factors: first, the observational data likely underestimate the transmission probability per
sex act due to inaccurate reporting of number of sex acts and through the selection bias of only including sero-
discordant couples; second, it is known that sexually transmitted disease can increase the chance of HIV
acquisition and transmission [105], but since they are not explicitly included in the model, higher value for the

transmission probability of HIV can implicitly capture their basic effect.
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Supplementary Appendix 2. Payout profiles of payout functions from Table 1.

The first two panels in this supplementary appendix repeat for reference Figure 11 of the text. The

remaining panels display the payout profiles for the other nine payout functions of Table 1. Each
payout function is presented for two sample sizes, N=10,000 and N=40,000.

As described in the text, payout functions 1 through 6 are threshold functions, while functions 7
through 10 are continuous functions.
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