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Abstract 

 
The Difference and System generalized method of moments (GMM) estimators are growing in 
popularity, thanks in part to specialized software. But as implemented in these packages, the 
estimators easily generate results by default that are at once invalid yet appear valid in specification 
tests. The culprit is their tendency to generate instruments that are a) numerous and, in System 
GMM, b) suspect. A large collection of instruments, even if individually valid, can be collectively 
invalid in finite samples because they overfit endogenous variables. They also weaken the Hansen 
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paper reviews the evidence on the effects of instrument proliferation, and describes and simulates 
simple ways to control it. It illustrates the dangers by replicating two early applications to economic 
growth: Forbes (2000) on income inequality and Levine, Loayza, and Beck (2000) on financial sector 
development. Results in both papers appear driven by previously undetected endogeneity.    
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Abstract 
The Difference and System GMM estimators are growing in popularity. As implemented in 
popular software, the estimators easily generate instruments that are numerous and, in System 
GMM, potentially suspect. A large instrument collection overfits endogenous variables even as it 
weakens the Hansen test of the instruments’ joint validity. This paper reviews the evidence on 
the effects of instrument proliferation, and describes and simulates simple ways to control it. It 
illustrates the dangers by replicating Forbes (2000) on income inequality and Levine et al. (2000) 
on financial sector development. Results in both papers appear driven by previously undetected 
endogeneity. 
 

 
 
Emperor Joseph II: My dear young man, don't take it too hard. Your work is ingenious. 
It’s quality work. And there are simply too many notes, that’s all. Just cut a few and it 
will be perfect. 
Mozart: Which few did you have in mind, Majesty? 
     — Amadeus (1984) 

 

I. Introduction 
The concern at hand is not too many notes but too many instruments. If all econometricians plied 

their craft with Mozart’s genius, the concern could be as humorously dismissed. But we do not, 

so it must be taken seriously. Sargan, perhaps one of the profession’s Mozarts, perceived the 

danger early on, in his paper introducing the “Sargan test”: 

A few calculations were made by the author on the order of magnitude of the errors 
involved in this approximation. They were found to be proportional to the number of 
instrumental variables, so that, if the asymptotic approximations are to be used, this 
number must be small. (Sargan, 1958) 

                                                 
* I thank Selvin Akkus for research assistance and Thorsten Beck, Decio Coviello, Kristin Forbes, Mead Over, Sami 
Bazzi, Jonathan Temple (editor), and two anonymous reviewers for helpful comments. I take sole responsibility for 
all assertions and opinions expressed herein. 
 JEL Classification numbers: C23, G0, O40 
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The popularity of the Difference and System generalized method of moments (GMM) 

estimators for dynamic panels has grown rapidly in recent years (Holtz-Eakin, Newey, and 

Rosen, 1988; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and Bond, 1998). 

(See Figure 1, which graphs citations by year for two of the most important papers behind the 

estimators.) The reasons are several. The estimators handle important modeling concerns—fixed 

effects and endogeneity of regressors—while avoiding dynamic panel bias (Nickell, 1981). The 

flexible GMM framework accommodates unbalanced panels and multiple endogenous variables. 

And free software automates their use (Arellano and Bond, 1998; Doornik, Arellano, and Bond, 

2002; Roodman, forthcoming).1 But an underappreciated problem often arises in the application 

of Difference and System GMM: instrument proliferation. 

The problem is not unique to these two estimators, and the consequences have been 

documented in the literature (Tauchen, 1986; Altonji and Segal, 1996; Andersen and Sørensen, 

1996; Ziliak, 1997; Bowsher, 2002). Textbooks even mention in passing the poor performance of 

IV estimators when instruments are many (Hayashi, 2000, p. 215; Ruud, 2000, p. 515; 

Wooldridge, 2002, p. 204; Arellano, 2003a, p. 171). But none of the textbooks confronts the 

problems in connection with Difference and System GMM with the force that is needed. The 

reality is that the problem is both common and commonly undetected. This note therefore 

reviews the risks of instrument proliferation in Difference and System GMM, describes 

straightforward techniques for limiting it, tests them with simulations, and then replicates two 

early studies in order to dramatize the dangers and illustrate the techniques for removing them. 

                                                 
1 Stata has included Difference GMM functionality since version 7 and System GMM functionality since version 10. 
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II. The Difference and System GMM estimators 
The Difference and System GMM estimators have been described many times (in addition to the 

original papers, see Bond, 2002, and Roodman, forthcoming), so the account here is cursory. 

Both estimators are designed for short, wide panels, and to fit linear models with one dynamic 

dependent variable, additional controls, and fixed effects: 

      0EEE

'
1,




 

itiiti

itiit

itittiit

vv

v

yy




 βx

 
(1)

where i indexes observational units and t indexes time. x is a vector of controls, possibly 

including lagged values and deeper lags of y. The disturbance term has two orthogonal 

components: the fixed effects, ,i  and idiosyncratic shocks, itv . The panel has dimensions N×T, 

and may be unbalanced. Subtracting 1, tiy from both sides of (1) gives an equivalent equation for 

growth, 

  itittiit yy    β'
1,1 x , (2)

which is sometimes estimated instead. 

Both estimators fit this model using linear GMM. Difference GMM is so-called because 

estimation proceeds after first-differencing the data in order to eliminate the fixed effects. 

System GMM augments Difference GMM by estimating simultaneously in differences and 

levels, the two equations being distinctly instrumented.2 

Of central interest here is the set of internal instruments used, built from past 

observations of the instrumented variables. In two-stage least-squares (2SLS) as ordinarily 

practiced, there is a trade-off between the lag distance used to generate internal instruments and 

                                                 
2 Both estimators can use the forward orthogonal deviations transform instead of differencing (Arellano and Bover 
1995). For simplicity of exposition, we will refer only to differencing. 
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the depth of the sample for estimation. For example, if yi,t–2 instruments yi,t–1, as in the 

Anderson and Hsiao (1982) ‘levels’ estimator, then all observations for period 2 must be dropped 

from the estimation sample since the instrument is unavailable then. 

The standard instrument set for Difference GMM (Holtz-Eakin, Newey, and Rosen 

(HENR), 1988) avoids the trade-off between instrument lag depth and sample depth by zeroing 

out missing observations of lags. It also includes separate instruments for each time period. For 

instance, to instrument yi3, a variable based on the twice-lag of y is used; it takes the value of yi1 

for period 3 and is 0 for all other periods.3 Similarly, yi4 is instrumented by two additional 

variables based on yi1 and yi2, which are zero outside period 4. The result is a sparse instrument 

matrix Z that is a stack of blocks of the form 
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(Here, the first row is taken to be for period 2 since the differenced variables are not observed in 

period 1.) This matrix corresponds to the family of (T – 2)(T – 1)/2 moment conditions, 

  0E ,  itltiy   for each t  3, l  2. (4)

Typically, analogous instrument groups are also created for elements of x that are thought to be 

endogenous or at least predetermined—correlated with past errors—and thus potentially 

endogenous after first-differencing. Researchers are also free to include external instruments, 

whether in this exploded HENR form, or in the classic one-column-per-instrumenting-variable 

                                                 
3 Of course, there is no specific matching between the instruments and the instrumented. All exogenous variables 
instrument all endogenous variables. 
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form. Usually, however, it is the quadratic growth of (4) with respect to T that drives high 

instrument counts in Difference GMM. 

To perform System GMM, a stacked data set is built out of a copy of the original data set 

in levels and another in differences. The HENR instruments and any others specific to the 

differenced equation are assigned zero values for the levels equation while new instruments are 

added for the levels equation and are zero for the differenced data. In particular, where lagged 

variables in levels instrument the differenced equation, lagged differences now instrument levels. 

The assumption behind these new instruments for levels is that past changes in y (or other 

instrumenting variables) are uncorrelated with the current errors in levels, which include fixed 

effects. Given this assumption, one can once more build an exploded HENR-style instrument set, 

separately instrumenting y for each period with all lags available to that period as in (3). 

However, most of the associated moment conditions are mathematically redundant with the 

HENR instruments for the differenced equation (Blundell and Bond, 1998; Roodman, 

forthcoming). As a result, only one lag is ordinarily used for each period and instrumenting 

variable. For instance, to instrument y, the typical instrument set is composed of blocks that look 

like 
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in the rows for the levels equation. This corresponds to the moment conditions 

  0E 1,   ittiy   for each t  3, (6)
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a collection that grows linearly in T. Thus, from the point of view of instrument count, the story 

remains the same when moving from Difference to System GMM: the overall count is typically 

quadratic in T. 

III. Symptoms of instrument proliferation 
If T = 3, Difference GMM generates only one instrument per instrumenting variable, and System 

GMM only two. But as T rises, the instrument count can easily grow large relative to the sample 

size, making some asymptotic results about the estimators and related specification tests 

misleading. The practical, small-sample problems caused by numerous instruments are of two 

sorts. First is a classical one that applies to instrumental variables estimators generally, namely 

that too numerous instruments, by virtue of being numerous, can overfit endogenous variables. 

The other problems are more modern and specific to Feasible Efficient GMM (FEGMM), in 

which sample moments are used to estimate an optimal weighting matrix for the identifying 

moments between the instruments and the errors. Unfortunately, the classical and modern 

problems can combine to generate results that at once are invalid and appear valid because of 

weakened specification tests. This section reviews the costs of instrument proliferation. 

Overfitting endogenous variables 
Simply by being numerous, instruments can overfit instrumented variables, failing to expunge 

their endogenous components and biasing coefficient estimates toward those from non-

instrumenting estimators. For intuition, consider that in 2SLS, if the number of instruments 

equals the number of observations, then the first-stage regressions will achieve R2’s of 1.0. The 

second stage will then be equivalent to Ordinary Least Squares (OLS). In fact, in finite samples, 

instruments essentially never have sample correlation coefficients with the endogenous 
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components of instrumented variables that are exactly 0, because of sampling variability. As a 

result, there is always some bias in the direction of OLS or Generalized Least Squares (GLS).   

The literature offers bits of both theory and evidence on overfitting bias in GMM, though 

not enough to provide general, practical guidance on how much overfitting bias to expect from 

an instrument collection of a given size. Tauchen (1986) demonstrates in simulations of very 

small samples (50–75 observations) that the bias of GMM rises as more instruments, based on 

deeper lags of variables, are introduced. Ziliak (1997) obtains similar results. In Monte Carlo 

tests of Difference GMM in particular, on 8×100 panels, Windmeijer (2005) reports that 

reducing the instrument count from 28 to 13 reduces the average bias in the two-step estimate of 

the parameter of interest by 40%. 

Arellano (2003b) makes an analytical attack on the overfitting bias caused by quadratic-in-

T instrument proliferation in dynamic panels by viewing the bias as a phenomenon of ‘double 

asymptotics’—something that occurs as T grows large as well as N. He shows that for 

regressions on predetermined but non-endogenous variables, overfitting bias is O(j/N), j being 

the instrument count. For regressions on endogenous variables, it is O(jT/N). The first result may 

have contributed to the folklore that the instrument count should not be too high relative to the 

panel width in some vague sense. But how large T needs to be for the result to be relevant, and 

how small j/N needs to be in practice, are unclear. And the bias with endogenous regressors is far 

worse. 

The absence of formal tests and accepted rules of thumb makes it important for 

researchers to test GMM results for robustness to reductions in the instrument set, as section V 

discusses. 
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Imprecise estimates of the optimal weighting matrix 
Difference and System GMM are typically applied in one- and two-step variants. The two-step 

variants use a weighting matrix that is the inverse of an estimate, S, of  'Var z , where z is the 

instrument vector. This ‘optimal’ weighting matrix makes two-step GMM asymptotically 

efficient. However, the number of elements to be estimated in S is quadratic in the number of 

instruments, which in the present context can mean quartic in T. Moreover, the elements of the 

optimal matrix, as second moments of the vector of moments between instruments and errors, are 

fourth moments of the underlying distributions, which can be hard to estimate in small samples 

(Hayashi, 2000, p. 215). Computed fourth moments are sensitive to the contours of the tails, 

which may be poorly sampled. One common symptom of the difficulty of approximating this 

ambitious matrix with limited data is that the estimate can be singular. When S is singular, 

carrying out the second estimation step in FEGMM then requires the use of a generalized inverse 

of S. In Difference and System GMM, this breakdown tends to occur as j approaches N (Arellano 

and Bond, 1998), a fact that has also contributed to the idea that N is a key threshold for safe 

estimation. The recourse to the generalized inverse does illustrate how a high instrument count 

can lead two-step GMM far from the theoretically efficient ideal. But it does not make two-step 

GMM inconsistent—the choice of weighting matrix does not affect consistency—so it is not 

obvious that j = N is a key threshold for reliability. 

Downward bias in two-step standard errors 
Although the poorly estimated weighting matrix does not affect the consistency of parameter 

estimates—the first moments of the estimators—it does bias statistics relating to their second 

moments. First, the usual formulas for coefficient standard errors in two-step GMM tend to be 

severely downward biased when the instrument count is high. Windmeijer (2005) argues that the 

source of trouble is that the standard formula for the variance of FEGMM is a function of the 
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‘optimal’ weighting matrix S but treats that matrix as constant even though the matrix is derived 

from one-step results, which themselves have error. He performs a one-term Taylor expansion of 

the FEGMM formula with respect to the weighting matrix, and uses this to derive a fuller 

expression for the estimator’s variance. The correction performs well in simulations, and is now 

available in popular Difference and System GMM packages. Fortunately, the bias in the standard 

errors is dramatic enough in Difference and System GMM that it has rarely escaped notice. 

Before the Windmeijer correction, researchers routinely considered one-step results in making 

inferences. 

Weak Hansen test of instrument validity 
A standard specification check for two-step GMM is the Hansen (1982) J test. It is computed as 
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, where, recall, S is the estimate of  'Var z . It is also the minimized 

value of the GMM criterion function that is the theoretical basis for estimation. If the equation is 

exactly identified—if regressors and instruments are equal in number—then coefficients can be 

found to make EZ '1

NT
 identically 0. J will be zero too. But if the equation is overidentified, as 

is almost always the case in Difference and System GMM, the empirical moments will generally 

be non-zero. In this case, under the null of joint validity of all instruments, the moments are 

centered around 0 in distribution. The J statistic normalizes these empirical moments against 

their own estimated covariance matrix, then sums them, and so is distributed 2 with degrees of 

freedom equal to the degree of overidentification. If errors are believed to be homoskedastic, 

ZZS '1

NT
 , and J is the older Sargan (1958) statistic. The J test is usually and reasonably 

thought of as a test of instrument validity. But it can also be viewed as a test of structural 
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specification. Omitting important explanatory variables, for instance, could move components of 

variation into the error term and make them correlated with the instruments, where they might 

not be in the correct model. 

A high p value on the Hansen test is often the lynchpin of researchers’ arguments for the 

validity of GMM results. Unfortunately, as Andersen and Sørensen (1996) and Bowsher (2002) 

document, instrument proliferation vitiates the test. In Bowsher’s Monte Carlo simulations of 

Difference GMM on N = 100 panels, the test is clearly undersized once T reaches 13 (and the 

instrument count reaches (13 – 1)(13 – 2)/2 = 66). At T = 15 (91 instruments), it never rejects the 

null of joint validity at 0.05 or 0.10, rather than rejecting it 5% or 10% of the time as a well-sized 

test would. It is easy in such simulations to produce J statistics with implausibly perfect p values 

of 1.000. 

Though the source of trouble is again the difficulty of estimating a large matrix of fourth 

moments, its manifestation has a somewhat different character here than in the previously 

discussed bias in the standard errors. There, the estimated variance of the coefficients was too 

small. Here, S is in a sense too big, so that J is too small. More precisely, the issue appears to be 

an empirical correlation between the fourth moments in S and the second moments EZ '1

NT
 

(Altonji and Segal, 1996). The very moment conditions that are least well satisfied get the least 

weight in 1S and this creates a false appearance of close fit. 

Again, there is no precise guidance on what is a relatively safe number of instruments. 

The Bowsher results just cited and replications below suggest that keeping the instrument count 

below N does not safeguard the J test. The danger is compounded by a tendency among 

researchers to view with complacency p values on specification tests above ‘conventional 

significance levels’ of 0.05 or 0.10. Those thresholds, thought conservative when deciding on the 
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significance of a coefficient estimate, are liberal when trying to rule out correlation between 

instruments and the error term. A p value as high as, say, 0.25 should be viewed with concern. 

Taken at face value, it means that if the specification is valid, the odds are 1 in 4 that one would 

observe a J statistic so large. The warning goes doubly for reviewers and readers interpreting 

results that may have already passed through filters of data mining and publication bias (Sterling, 

1959; Tullock, 1959; Feige, 1975; Lovell, 1983; Denton, 1985; Stanley, 2008). 

Closely related to the Hansen test for validity of the full instrument set is the Difference-

in-Hansen test. (It generalizes the Difference-in-Sargan test, and indeed is often called that, but 

we maintain the naming distinction here for clarity.) Difference-in-Hansen checks the validity of 

a subset of instruments. This it does by computing the increase in J when the given subset is 

added to the estimation set-up. Under the same null of joint validity of all instruments, the 

change in J is 2 with degrees of freedom equal to the number of added instruments. But by 

weakening the overall Hansen test, a high instrument count also weakens this difference test. 

The Sargan and Difference-in-Sargan tests are not vulnerable to instrument proliferation 

since they do not depend on an estimate of the optimal weighting matrix. But they require 

homoskedastic errors for consistency and that is rarely assumed in this context.4 

IV. Why weak Hansen and Difference-in-Hansen tests are 
particularly dangerous in System GMM 

System GMM does not originate in the oft-cited Blundell and Bond (1998), but rather in 

Arellano and Bover (1995). One contribution of Blundell and Bond is to articulate the condition 

under which the novel instruments that characterize the estimator are valid. The necessary 

assumption is not trivial, but this too seems underappreciated. Since System GMM regressions 

                                                 
4 Because of the trade-off, xtabond2 (Roodman 2006) reports both the Sargan and Hansen statistics after one-step 
robust and two-step estimation. 
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are almost always overidentified, the Hansen J should theoretically detect any violation of the 

assumption, relieving researchers of the need to probe it in depth. But we are interested in 

contexts in which instrument proliferation weakens the test. The assumption bears discussion. 

A superficial statement of the key assumption flows directly from (6): the lagged change 

in y is uncorrelated with the current unexplained change in y ( it ). Though obvious as far as it 

goes, this requirement is counterintuitive on closer examination. For by (1) and (2), both 1,  tiy  

and it  contain the fixed effects. To understand how this condition can nevertheless be satisfied, 

consider a version of the data-generating process in (1) without controls—a set of AR(1) 

processes with fixed effects: 
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Entities in this system can evolve much like GDP/worker in the Solow growth model, 

converging toward mean stationarity. By itself, a positive fixed effect, for instance, provides a 

constant, repeated boost to y in each period, like investment does for the capital stock. But, 

assuming 1 , this increment is offset by reversion toward the mean, analogous to 

depreciation. The observed entities therefore converge to steady-state levels defined by 
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So the fixed effects and the autocorrelation coefficient interact to determine the long-run means 

of the series. If 1 , the point of mean stationarity is an unstable equilibrium, so that even if 

an entity achieves it, noise from the idiosyncratic error vit leads to divergence that accelerates 

once begun. We will assume 1  for the rest of the discussion and soon discard 1 . 
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With this background, we return to the System GMM moment conditions. Expanding (6) 

using (7), 
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Given the assumptions that   0E itiv  and that there is no autocorrelation in the itv  (which is 

routinely tested), this reduces to 
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If  = 1, then this condition can only be satisfied if   0E 2 i , that is, if there are no fixed 

effects, in which case dynamic panel bias is avoidable and the elaborate machinery of System 

GMM is not needed. Otherwise, we divide (9) by 1 – , yielding 
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This says that deviations from long-run means must not be correlated with the fixed effects. 

In fact, if this condition is satisfied in some given period, it holds in all subsequent 

periods. To see this, we substitute for ity  in (10) with (7) and again use   0E iitv  : 
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So 001,  itti mm . A technical reading of this equation says if 0 —if dynamic modeling 

is warranted—then (10) holds for any t only if it holds for all t. It only holds ever if it holds 

forever. A more practical reading is that the key moment itm decays toward 0 at a rate set by , 

so that all individuals eventually converge close enough to their long-run means that violations 

of (10) become negligible. The key question for the validity of System GMM is thus whether 

they have achieved such a state before the study period—whether (10) holds at t = 1. This is the 

requirement on the ‘initial conditions’ in the title of Blundell and Bond (1998). In applications 

with additional covariates, we amend the requirement to refer to long-run means of y conditional 

on those covariates. 

The Blundell-Bond requirement creates a tension in the application of System GMM. On 

the one hand, System GMM promises the most benefit over Difference GMM for applications 

with persistent series, in which the lagged-levels of variables are weak instruments for 

subsequent changes (Blundell and Bond, 1998, 2000; Bond, Blundell, and Windmeijer, 2000). 

On the other hand, it is precisely in such contexts, where the magnitude of is close to 1, that 

any initial violation of (10) will take the longest to decay away, and is least likely to have done 

so before the study period. Where System GMM offers the most hope, it may offer the least help. 

For further intuition, Figures 2–5 illustrate one circumstance that satisfies the Blundell-

Bond requirement and one that does not. All the figures are based on Monte Carlo simulations of 

two individuals according to the data-generating process in (7). We set  = 0.8 since persistent 

series are the ones for which System GMM is most promising, and  22.0,0~ Nvit . Both fixed 

effects are positive: 1 = 0.2 and 2 = 0.8. In Figure 2, both individuals start at 0. The figure plots 

the path of yit and   1,1,E   titiit yyy  , the difference between the two being the error term, 



 15 

ititit v  , which is consistently positive because the fixed effects are assumed positive and 

large relative to the itv . Figure 2 also shows the steady-states to which the individuals converge, 

given by (8), which are 1.0 and 4.0. 

The scenario splits into a growth phase and a steady-state phase, with the transition 

around t = 15. In the growth phase, the distance from the steady-state is systematically related to 

the size of the fixed effect—individual 2 has a higher fixed effect, thus a higher long-run mean, 

thus larger initial deviations from it—violating Blundell and Bond’s requirement. As the theory 

above predicts, the error is correlated with 1,  tiy , the basis for System GMM instruments (see 

the left panel of Figure 3). Since fixed effects are fixed, the correlation is not within individuals 

but across them. Then, in the steady-state phase, growth decouples from the error term, going to 

0 on average, and making 1,  tiy  a valid basis for instruments. Here, instrument and error do not 

correlate across individuals (right panel of Figure 3). In sum, for the particular case where 

individuals have a common starting point, the validity of System GMM is equivalent to all 

having achieved mean stationarity by the study period. 

Figures 4 and 5 repeat the simulation with one change: like individual 1, individual 2 now 

starts one unit below its long-run mean—at 3.0 instead of 0.0. Since the absolute increase in y is 

governed by the distance from the long-run mean, the individuals are similarly distant from their 

long-run means at any given time and rise toward them at similar rates, despite different fixed 

effects.5 The lack of correlation of the fixed effects with distance from the long-run means 

satisfies the Blundell-Bond assumption. Figure 5 confirms that the instruments are uncorrelated 

with the errors throughout. Even in the growth phase, System GMM is valid. 

                                                 
5 If y were taken as being in logarithms, then the individuals would experience similar percentage growth rates. 
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The second simulation shows that initial mean-stationarity is not necessary for the 

Blundell-Bond requirement, as a naïve reading of the first simulation might imply. But as a 

source of intuition, even it too can be misleading in one respect. When there are more than two 

individuals, we do not need to require that all start at the same distance from their steady states. 

Rather, and to repeat, we require that those initial distances are merely uncorrelated with the 

fixed effects. Nevertheless, it is important to appreciate that this assumption is not trivial. For 

example, in the study of economic growth, it is not hard to imagine a systematic relationship 

between a country’s fixed effect and its distance from its conditional long-run mean in 1960 or 

1970 or whenever a study period begins (Bond, Hoeffler, and Temple, 2001). 

In fitting models with controls x, to the extent that these controls are endogenous to y, 

they too may contain information from the fixed effects. If these variables are also instrumented 

in levels with their own lagged differences, as is standard in System GMM, the assumption that 

lagged x is uncorrelated with the error term is non-trivial too. For this reason, researchers 

should consider applying a Difference-in-Hansen test to all the System GMM instruments for the 

levels equation, in addition to testing just those based on y. 

V. Techniques for reducing the instrument count 
Researchers have applied two main techniques to limit the number of instruments generated in 

Difference and System GMM. The first is to use only certain lags instead of all available lags for 

instruments. Separate instruments are still generated for each period, but the number per period is 

capped, so the instrument count is linear in T. This is analogous to projecting regressors onto the 

full HENR instrument set but constraining the coefficients on certain lags in this projection to be 

0 (Arellano, 2003b). 
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The second, less common, approach has been to combine instruments through addition 

into smaller sets. This has the potential advantage of retaining more information, since no lags 

are actually dropped, and is equivalent to imposing the constraint in projecting regressors onto 

HENR instruments that certain subsets have the same coefficient. To wit, we change the 

instrument matrix by ‘collapsing’ the blocks in (3) to 
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which can be thought of as the result of squeezing the matrix in (3) horizontally and adding 

together formerly distinct columns. Similarly, the System GMM instruments collapse to 
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Formally, in place of the standard Difference GMM moment conditions in (4), we impose 

  0E ,  itltiy   for each l  2, (12)

The new moment condition set embodies the same belief about the orthogonality of ltiy ,  and 

it . But in articulating that belief, we only ask the estimator to minimize the magnitude of the 

empirical moments 
t

itlti ey , for each l, rather than separate moments  
lt

itlti ey
,

,  for each l 

and t. 

Though reached in a round-about way, collapsed instruments are straightforward 

conceptually: one is made for each lag distance, with 0 substituted for any missing values. 
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Collapsing too makes the instrument count linear in T. Beck and Levine (2004), Calderón, 

Chong, and Loayza (2002), and Carkovic and Levine (2005) use the technique. Roodman 

(forthcoming) independently devised it in writing xtabond2 for Stata. 

One can combine the two approaches to instrument containment: collapsing instruments 

and limiting lag depth amounts to dropping all but the leftmost column or columns of (11). The 

instrument count is then invariant in T.6 

These techniques provide the basis for some minimally arbitrary robustness and 

specification tests for Difference and System GMM: cut the instrument count in one of these 

ways and examine the behavior of the coefficient estimates and Hansen and Difference-in-

Hansen tests.7 

We perform Monte Carlo simulations to show the efficacy of these techniques. The 

simulations again set  = 0.8, but this time use N = 100 and  1,0~ Nvit . Starting values take a 

form that allows us to vary the degree of violation of the Blundell-Bond condition: 

 
 

i
i

i

iiui

ii

uy

wu
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
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


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



1

1
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2  

Initial deviations from long-run means are perfectly correlated (uncorrelated) with the i when  

= 1 ( = 0). High instrument counts often occur in regressions with a combination of a moderate 

value for T, perhaps less than 10, and exploded HENR instrument sets generated from several 

                                                 
6 Arellano (2003b) proposes another, more theoretically grounded technique, which has yet to enter common 
practice. Before running the GMM estimation, he models the instrumenting variables as a group, as functions of 
their collective lags, using a vector autoregression. The coefficients in this regression become the basis for 
constraints on how the endogenous variables in the GMM regression project onto the instruments. 
7 One could even expand this robustness testing by repeatedly selecting random subsets from the collection of 
potential instruments and investigating how key results such as coefficients of interest and the p value on the J 
statistic vary with the number of instruments. I thank Mead Over for this suggestion. 



 19 

covariates in addition to y. For simplicity, we eschew covariates and proliferate purely by 

increasing T alone. Hence, the symptoms of proliferation tend not to become noticeable in our 

panels until about T = 15. The longer timeframe in turn reduces the instrument invalidity we 

want to simulate, since problematic deviations from long-run means decay over time. To 

compensate, we set u = 2, a value that proves large enough to make the problematic initial 

deviations troublesome even as T approaches 20. 

For each choice of and T, we apply four variants of System GMM to 500 simulated 

panels. The first variant uses the full HENR instrument set. The second restricts this to one-

period lags. The third instead collapses it. The fourth does both. Results for  = 0.0 and 

 = 0.9—scenarios in which System GMM is valid and invalid, respectively —are in Table 1. 

Several patterns emerge. Reducing the instrument count does increase the variance of the 

estimator. However it has little systematic effect on the bias. If anything, when System GMM is 

valid, collapsed instruments cause less bias. The bias with full instrument and lag-1-only 

instruments suggests that overfitting can be a problem even at low instrument counts. 

Meanwhile, when System GMM is invalid, reducing the instrument sets causes no more bias. 

And it dramatically increases the ability of the Hansen test to detect the violation. At T = 20, the 

full-instrument variant never detects it, with an average p value on the Hansen J test of 1.000, 

while the most Spartan variant (bottom right) essentially always does, with an average p value of 

0.017. The simulations argue for conservatism in formulating instrument sets for base 

specifications and extremism in testing them for sensitivity to further reductions. 
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TABLE 1 
Simulation results for N = 100,  = 0.8, varying , T, and instrument set 

 

VI. Examples 
To demonstrate that the risks described above are of more than theoretical concern, we re-

examine two early applications of these estimators. 

Forbes (2000) on inequality and growth 
Forbes (2000) studies the effect of national income inequality on economic growth, drawing on 

the Deininger and Squire (1996) data set on inequality. Her preferred specification applies 



 21 

Difference GMM to a panel covering 45 countries during 1975–95 in five-year periods.8 Data 

gaps reduce the sample from a potential 180 observations to 135. Controls include the logarithm 

of initial GDP/capita, the average number of years of secondary education among men and 

among women, and the purchasing power parity price level for investment. Most independent 

variables are lagged one period. Forbes finds that higher inequality leads to faster economic 

growth in the following period. 

The original regression and a replication based on a reproduction data set produce similar 

results, in particular, significant, positive coefficients on lagged inequality (first two columns of 

Table 2). The replication takes advantage of the Windmeijer correction, which was unavailable 

to Forbes and increases some of the standard errors. (Understanding the bias in the uncorrected 

standard errors, Forbes does not rely solely on them for inference.) The reproduction generates 

80 instruments, against 138 observations.9 This seems high enough to cause overfitting bias. 

Further heightening the concern is the well-known problem of weak instruments in 

Difference GMM, which motivated the development of System GMM, and can also reinforce 

endogeneity bias (Staiger and Stock, 1997). The relatively small coefficients on initial 

GDP/capita, about –0.05, correspond to  = 0.95 in (1). GDP/capita is a highly persistent series, 

so that lagged levels of GDP/capita are weak instruments for subsequent changes. Likewise, a 

regression of the change in income Gini on the lagged level of the Gini yields an R2 of 0.04, so 

the variable of interest appears weakly instrumented too.10 The risk that the endogenous 

component of growth is incompletely expunged is therefore substantial. And the Hansen test 

                                                 
8 Forbes (2000), table 3, column 4. 
9 Forbes does not report the number of instruments in the original regression. Included exogenous variables—here, 
time dummies—are counted as instruments. 
10 Blundell and Bond (2000) discusses this simple test of weakness. 
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returns a perfect p value of 1.00, the classic sign of instrument proliferation weakening its ability 

to detect the problem. 

The remaining columns of Table 2 examine the sensitivity of the Forbes results to 

reducing the number of instruments. Column 3 uses only the two-period lags from the HENR 

instrument set, the latest ones that are valid under the assumptions of the model. Column 4 

instead collapses the instruments. Column 5 combines the two modifications. The coefficient on 

the income Gini loses significance as the number of instruments falls. 

Forbes reports several variants of the core Difference GMM regression: excluding East 

Asia, excluding Latin America, or using three alternative measures of inequality. Applying the 

tests in Table 2 to these variants produces similar results except for two cases in which inequality 

remains significant in the tests that generate 30 instruments: when East Asia is excluded and 

when inequality is measured as the income ratio of the top 20% to the bottom 40%.11 

Given the general dependence of the Forbes results on a high instrument count, it is hard 

to rule out reverse or third-variable causation in the positive relationship found between 

inequality and growth.12 A competing hypothesis is that transient growth shocks such as financial 

crises and hyperinflation episodes disproportionately affect the lower quintiles, increasing 

inequality, but are followed within a few years by growth recoveries. This would show up in the 

data as increases in inequality leading to increases in growth, but would be a case of omitted-

variable endogeneity. 

 

                                                 
11 Full results are available from the author. 
12 On the other hand, the new results do not support the hypothesis that Forbes challenged, namely, of a negative 
relationship between inequality and growth. 
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TABLE 2 
Tests of Forbes (2000) Difference GMM regressions of GDP/capita growth on income 
inequality 

Dependent variable: GDP/capita 
growth Original

Full 
instruments

Second-lag 
instruments 

only
Collapsed 

instruments

Collapsed 
second-lag 
instruments

Income inequality (Gini), lagged 0.0013 0.0032 0.0026 0.0032 0.0026
(2.17)** (2.12)** (1.25) (1.09) (0.57)

Log initial GDP/capita –0.0470 –0.0538 –0.0533 –0.0188 0.0574
(5.88)*** (1.89)* (1.49) (0.46) (1.08)
–0.0080 0.0049 –0.0016 –0.0162 0.0512
(0.36) (0.21) (0.05) (0.47) (0.46)
0.0740 0.0183 0.0271 0.0472 –0.0269

(4.11)*** (0.86) (0.78) (1.50) (0.28)
Price level of investment, lagged –0.0013 –0.0007 –0.0008 –0.0008 –0.0011

(13.00)*** (3.72)*** (5.26)*** (2.13)** (2.87)***
Observations 135 138 138 138 138
Instruments 80 30 30 10
Arellano-Bond test for AR(2)
  in differences (p  value) 0.27 0.25 0.13 0.21
Hansen test of joint validity
  of instruments (p  value) 1.00 0.53 0.12

Exactly 
identified

    Notes: Period dummies not reported. Replications are two-step Difference GMM with the Windmeijer 
(2005) correction. t  statistics clustered by country in parenthesis. *significant at 10%. **significant at 5%. 
***significant at 1%.

Years of secondary schooling 
   among men, lagged
Years of secondary schooling 
   among women, lagged

Replications

 

Levine, Loayza, and Beck (2000) on financial development and growth 
Levine et al. (LLB, 2000) investigates the effect of financial sector development on economic 

growth in both a long-period cross-section of countries and a panel with five-year periods. We 

examine the preferred panel regressions, which are System GMM. LLB vary these regressions 

along two dimensions: the control set and the proxy for financial sector development. The 

‘simple’ control set consists of the logarithm of initial GDP/capita and mean years of secondary 

schooling among adults. The ‘policy’ control set adds government spending/GDP, 100%+the 

black market premium on foreign exchange, 100%+inflation, and trade/GDP, all taken in 

logarithms. The three financial development proxies, also in logs, are liquid liabilities of the 

financial system as a share of GDP; bank credit as a share of total outstanding credit; and 

outstanding credit to the private sector, excluding that from the central bank, as a share of GDP 
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(‘private credit’). We focus first on what appears to be LLB’s preferred specification, with the 

policy controls and private credit, then summarize results for the others. 

LLB clearly appreciate the dangers of instrument proliferation. They discuss the issue 

(LLB, footnote 27). They use only one lag of each instrumenting variable.13 And they apply the 

Difference-in-Sargan test to the System GMM instruments, reporting that the null cannot be 

rejected at usual significance levels (LLB, footnote 24). 

Despite this care, the instrument counts appear high enough to weaken the ability to 

detect invalidity in the System GMM instruments. The first two columns of Table 3 show the 

original and replication results for the preferred specification, both run on the original data set. 

The replication again takes advantage of the Windmeijer correction. (LLB too do not rely solely 

on their uncorrected two-step errors for inference.) 

The replication includes 75 instruments, compared to 77 countries and 353 

observations.14 Here, the Difference-in-Hansen test of the System GMM instruments indeed 

returns a benign p value of 0.75. A test zeroing in on those instruments for the levels equation 

based on first-differences in the dependent variable—on lagged growth—returns 0.97. But 

collapsing the instruments (column 3) produces results that seem less valid.15 Private credit 

retains its significance for growth. But now the p value on the overall Hansen test dips to 0.03, 

while a Difference test of just the instruments based on lagged growth gives 0.001, suggesting 

that these instruments are indeed a particular source of trouble. (A Difference test of all System 

GMM instruments is unavailable here because without them the model is underidentified.) The 

                                                 
13 According to LLB’s DPD for Gauss script at http://go.worldbank.org/40TPPEYOC0. 
14 LLB do not report the number of instruments in the original regressions. However, they note that it is high for the 
regression in question (their footnote 27). They point out that the regressions with the simple control set have many 
fewer instruments, but return results consistent with those from the regressions with policy controls. 
15 Since LLB only use one lag per instrumenting variable, the test based on restricting to one lag is not available to 
us. 
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Blundell-Bond assumption appears violated: cross-country differences in unexplained growth 

(including the fixed effects) apparently correlate with distances from conditional long-run 

means.16 Column 4 shows that if the problematic System GMM instruments are dropped—

bringing the regressions back to Difference GMM—private credit loses its significance for 

growth. 

Table 4 summarizes results of similar tests for all the LLB System GMM regressions. 

Columns 1 and 3 replicate original results while 2 and 4 modify the regressions by collapsing 

instruments.17 Some of the reproductions differ from the originals in failing to show significance 

for the financial development proxy, perhaps because of the Windmeijer correction. But even 

after this correction, enough of the new regressions find significance that the LLB results appear 

to be more than a fragile fluke. The correlation is real, and the main question is about causation. 

With controls for policy, p values on the Difference-in-Hansen tests of the System GMM 

instruments go down to 0.03 or less when instruments are collapsed. The simple-control-set 

regressions exhibit a somewhat opposite pattern. Before collapsing, p values for the Difference-

in-Hansen test for instruments based on lagged growth exceed ‘conventional significance levels’ 

but are still low in common sense terms, ranging between 0.13 and 0.24. They rise in the 

regressions on liquid liabilities and private credit when instruments are collapsed. Perhaps, the 

low degree of overidentification in the collapsed regressions with simple controls (11 

instruments and 9 regressors including period dummies) weakens the Hansen test too. 

Overall, none of the regressions performs well on the overidentification tests in both 

exploded and collapsed variants. It seems likely that lagged growth is an invalid instrument in 

                                                 
16 This doubt about the applicability of System GMM to growth contradicts Bond, Hoeffler, and Temple (2001), 
either because their instrument sets are too large, or because their control set differs. 
17 Some of the reproductions differ from the originals in failing to find significance for the financial development 
proxy. The Windmeijer correction may again explain the difference. If not, then the differences may be a sign of 
fragility. 
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the LLB regressions, that System GMM is invalid. The suspicion extends to the instruments 

based on and most relevant to the financial development proxies since these are presumed 

endogenous to growth. Indeed among the collapsed regressions, the ones with the worst Hansen 

test results show the strongest significance for financial development, which suggests that 

endogeneity and apparent identification are linked. Dropping the instruments that fail the test, 

reverting to Difference GMM, eliminates the result for liquid liabilities, as for private credit, and 

weakens it for bank credit/total credit. These facts suggest that instrument invalidity is the source 

of the LLB panel results. 

TABLE 3 
Tests of Levine et al. (2000) System GMM regressions of GDP/capita growth on private 
credit/GDP 
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TABLE 4 
Tests of Levine et al. (2000) System GMM regressions, all variants 

Financial development proxy Simple controls

Simple controls, 
collapsed 

instruments Policy controls

Policy controls, 
collapsed 

instruments
Log private credit/GDP 1.82 1.49 1.41 2.34

(2.42)** (1.50) (2.04)** (2.21)**
Instruments 35 11 75 19

Difference-Hansen tests (p  values)
   All system GMM instruments 0.41 0.75
   Those based on lagged growth only 0.13 0.65 0.97 0.001
Log liquid liabilities/GDP 1.75 1.97 3.03 4.19

(1.86)* (1.41) (3.14)*** (3.48)***
Instruments 35 11 75 19

Difference-Hansen tests (p  values)
   All system GMM instruments 0.46 0.33
   Those based on lagged growth only 0.24 0.90 0.20 0.03
Log bank credit/total credit 2.29 –0.09 1.34 2.73

(0.82) (0.02) (1.34) (1.10)
Instruments 35 11 75 19

Difference-Hansen tests (p  values)
   All system GMM instruments 0.26 0.27
   Those based on lagged growth only 0.19 0.17 0.47 0.002

    Notes: All regressions are two-step System GMM. t  statistics clustered by country, incorporating the Windmeijer (2005) 
correction, in parenthesis. Simple controls are initial GDP/capita and average years of secondary schoooling. Policy controls 
are those and government consumption/GDP, inflation, black market premium, and trade/GDP, as in Table 3. *significant at 
10%. **significant at 5%. ***significant at 1%.

 

VII. Conclusion 
The appeal of Difference and System GMM lies in the hope they offer for solving a tough 

estimation problem: the combination of a short panel, a dynamic dependent variable, fixed 

effects, and a lack of good external instruments. Unfortunately, as implemented in popular 

software packages, the estimators carry a great and underappreciated risk: the capacity by default 

to generate results that are invalid and appear valid. The potential for false positive results is 

serious. As the author of one of the packages (xtabond2 for Stata), I feel partly responsible. 

To reduce the danger, several practices ought to become standard in using Difference and 

System GMM. Researchers should report the number of instruments generated for their 

regressions. In System GMM, Difference-in-Hansen tests for the full set of instruments for the 

levels equation, as well as the subset based on the dependent variable, should be reported. 
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Results should be aggressively tested for sensitivity to reductions in the number of instruments. 

And researchers should not take much comfort in specification tests that barely ‘exceed 

conventional significance levels’ of 0.05 or 0.10 as those levels are not appropriate when trying 

to rule out specification problems, especially if the test is undersized. 

This analysis provides a lesson on the difficulty of short-panel econometrics. One leading 

estimator, Difference GMM, often suffers from weak instrumentation. The favored alternative, 

System GMM, works only under arguably special circumstances. Perhaps the lesson to be drawn 

is that internal instruments, though attractive as a response to endogeneity, have serious 

limitations. 

There is also a larger reminder here about the dangers of automated sophistication. It is 

all too easy to employ complicated estimators without fully appreciating their risks—indeed 

sometimes it takes years for their disadvantages to come to light. If those risks include a 

propensity for false positives, they are particularly serious because of the way research and 

publication processes favor positive results. Or maybe the problem is nothing new. Even OLS 

can mislead as easily as it illuminates. So perhaps this paper is best seen as part of the collective 

learning process that is applied econometrics. Theoreticians develop new estimation techniques 

meant to solve real problems. Pioneering researchers adopt them, at some risk, to study 

important questions. Those who follow study and learn from their experiences. And so, one 

hopes, practice improves. 
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Figure 1. Citations of Arellano and Bond (1991) and Blundell and Bond (1998) per year, 
1991–2006 
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Figure 2. Simulation of an AR(1) process with fixed effects that violates the Blundell-Bond 
conditions: two individuals with the same starting point and different long-run means 
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Note: Solid paths show the evolution of y for the two individuals while the dotted ones show expected y conditional 
on previous y; the gaps between them are the errors. Individual 2’s larger fixed effect goes hand-in-hand with a 
higher long-run mean (4 instead of 1) and larger deviations from that mean in early periods, violating the Blundell-
Bond (1998) assumption. 
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Figure 3. Instrument versus error in Figure 2 simulation 
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Note: yi,t-1, on the horizontal axes, is the basis for instruments for the levels equation in System GMM. 
Observations are marked by individual. Dashed lines are best fits to all data points. The left figure shows that in the 
early periods of the simulation in Figure 2,yi,t-1 is strongly correlated with the error, making them invalid. 
Individual 2 has both higher errors, because of a large fixed effect, and high growth, because of its distance from its 
long-run mean. The right figure shows that in later periods, after the individuals have converged to their long-run 
means, the correlation dwindles.  
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Figure 4. Simulation of an AR(1) process with fixed effects that satisfies the Blundell-Bond 
conditions throughout: two individuals that start at the same distance from their respective 
steady states 

0

1

2

3

4

5

0 5 10 15 20 25 30
t

y 
 

 Individual 2 path (y 2t )

E[ y 2t | y 2,t – 1] =  y 2,t – 1

Individual 2 long-run mean ( 2/(1 –  ))

E[ y 1t | y 1,t – 1] =  y 1,t – 1

Individual 1 long-run mean 

( 1/(1 –  ))
 Individual 1 path (y 1t )

Individual 2 error (2t =  2 +v 2t )

 

Note: The data-generating process is the same as for Figure 2, except that 30,2 y . Both individuals now start 1 

unit below their long-run means. As a result, the individuals have similar deviations from those means at any given 
time even though their fixed effects differ. This lack of association satisfies the Blundell-Bond condition. 



 5 

Figure 5. Instruments versus errors in Figure 4 simulation 
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Note: In this simulation, the individuals rise to their long-run means at similar rates, so even in the earlier years 
lagged growth is uncorrelated with the errors, making the System GMM instrument based on lagged growth valid 
throughout. 
 


