Are Family Planning Programs Effective?:
The Effect of FP Programs and Education on
Fertility in Indonesia

Gustavo Angeles (UNC-Chapel Hill)
David Guilkey (UNC-Chapel Hill)
Tom Mroz (Georgia State University &
Federal Reserve Bank of Atlanta)

December 2017

Support for this research came from the
MEASURE Evaluation project, a USAID
Cooperative Agreement HRN-A-00-97-00018-00
Disclaimer:

The views expressed here are the authors’ and not necessarily those of the Federal Reserve Bank of Atlanta, or the Federal Reserve System.

We thank the support of the MEASURE Evaluation project, a USAID Cooperative Agreement. The views are also not necessarily those of USAID.
Key questions:

1. Are FP Programs effective in reducing fertility?
2. Reducing fertility: education or FP programs?
3. Do FP Programs influence non-fertility outcomes?

For 1 and 2: Many results from numerous empirical studies:

- Small or no effects of FP programs on fertility
- Large and significant effect of education on fertility
Prior results support education as a driver of fertility reductions but weaken support for FP programs’ impacts.

However, these conclusions are questionable due to:

I. Endogenous Selection into educational attainment

II. FP Programs could increase education levels, so there could be Long-term indirect effects of FP
I) Selection into education: How does it affect the estimation of program effects?

Example,

- Years of Education
 - \((-\)]
 - Fertility
I) Selection into education: How does it affect the estimation of program effects?

Example,
I) Selection into education: How does it affect the estimation of program effects?

Example,

```
Family Planning Programs

(+)

Years of Education

(-)

Fertility

(-)
```
I) Selection into education: How does it affect the estimation of program effects?

Example,
I) Selection into education: How does it affect the estimation of program effects?

Example,

- Preference for labor market activities
- Years of Education
- Family Planning Programs
- Fertility
I) Selection into education: How does it affect the estimation of program effects?

Example,

- Preference for labor market activities
- Years of Education
- Fertility
- Family Planning Programs

Relationships:
- Preference for labor market activities \(\rightarrow\) Years of Education \(\rightarrow\) Fertility
- Years of Education \(\rightarrow\) Fertility
- Family Planning Programs \(\rightarrow\) Fertility

Symbols: \(+\) denotes positive correlation, \(-\) denotes negative correlation.
I) Selection into education: How does it affect the estimation of program effects?

Example,

Is there an Indirect Effect of FP through families beginning to recognize that there are achievable alternatives to having children for young women?

If so, there could be important long term impacts of FP programs. Return to this issue in a few slides.
I) Selection into education: How does it affect the estimation of program effects?

Example,

Survey data: Preferences not observed
I) Selection into education: How does it affect the estimation of program effects?

Example,

Survey data: Preferences not observed
I) Selection into education: How does it affect the estimation of program effects?

Example,

Survey data: Preferences not observed
Simple analysis: Lower Fertility attributed to Education when it is actually due to Education and Preferences
I) Selection into education: How does it affect the estimation of program effects?

Example,

Survey data: Preferences not observed
Simple analysis: Lower Fertility attributed to Education when it is actually due to Education and Preferences
Consequences: Education effect becomes overestimated

Problem widely acknowledged, but data limitations often prevent corrective actions
I) Selection into education: How does it affect the estimation of program effects?

Example,

- Preference for labor market activities
- Family Planning Programs
- Years of Education
- Fertility

Survey data: Preferences not observed
Simple analysis: Lower Fertility attributed to Education when it is actually due to Education and Preferences
Consequences: Education effect becomes overestimated

Problem widely acknowledged, but data limitations often prevent corrective actions

More Consequences: Overestimated education effect \(\Rightarrow\) underestimated FP effect
I) Selection into education: How does it affect the estimation of program effects?

Example,

Survey data: Preferences not observed

Simple analysis: Lower Fertility attributed to Education when it is due to Education and Preferences

Consequences: Education effect overestimated

Problem widely acknowledged, but data limitations prevented corrective actions

More Consequences: Overestimated education effect \rightarrow underestimated FP effect
I) Selection into education: How does it affect the estimation of program effects?

Example,

Survey data: Preferences not observed
Simple analysis: Lower Fertility attributed to Education when it is due to Education and Preferences
Consequences: Education effect overestimated

Problem widely acknowledged, but data limitations prevented corrective actions

More Consequences: Overestimated education effect \(\Rightarrow\) underestimated FP effect
II) FP Programs could Increase Women’s Education

Finding: Exposure to FP programs before the start of reproductive age (7) increases educational attainment, delays marriage, and reduces fertility.

But, why?

Contraceptive knowledge provided by FP programs can change women’s plans: Instead of “defaulting” to a young age at marriage and having many kids quickly, contraception gives a woman the opportunity to reap the potential benefits of increased education and labor force participation.

→ FP programs might have a long-term effect through education and expanded horizons.
- **Purpose of our study**: To examine the direct effect of FP programs on fertility plus the indirect effects through education, controlling for potential selectivity of schooling

- **Method**: Structural model of fertility, woman’s education, age at marriage, and husband’s education

- **Data**: 1993 Indonesia Family Life Survey
 5,025 women age 13-51 in 321 clusters
 ** Fertility, schooling, marriage, and place of residence histories
 ** Regional and sub-regional measures of school quality over time
 ** Linked community & health facility survey:
 FP Program history: Year FP first offered by different providers
Indonesia

- 190 million people (1993)
- Major changes in fertility:

<table>
<thead>
<tr>
<th>Year</th>
<th>TFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>5.6</td>
</tr>
<tr>
<td>1994</td>
<td>2.8</td>
</tr>
</tbody>
</table>

- Family Planning Program: Started in 1970; implemented in 5-year phases
Age-Specific Conception Rates. Indonesia 1965-1993

Center for Global Development, Third Annual Birdsall House Conference, “Reproductive Choices to Life Chances: The Links Between Contraception and Women’s Economic Empowerment”
Average Years of Schooling. Women. Indonesia, 1963-1993

Center for Global Development, Third Annual Birdsall House Conference, “Reproductive Choices to Life Chances: The Links Between Contraception and Women’s Economic Empowerment”
Percentage of Clusters With Family Planning Services by Facility Type. Indonesia 1960-1993

- Health Center
- Clinic/doctor
- Nurse/midw/param.
- Posyandu
- Auxil.H.Center

Year:
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93

% of Clusters:
- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100

Center for Global Development, Third Annual Birdsall House Conference, “Reproductive Choices to Life Chances: The Links Between Contraception and Women’s Economic Empowerment”
So, are FP programs effective? (Lifetime simulations)

I. Controlling for endogenous/selective education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

Simulations evaluated at 1970 govt. health expenditures and 1993 class sizes. Models control for age, migration, place of residency, marital status, husband’s education, year effects, FPP at age 7, regional GDP, Govt. expenditures in FP, edu, health.
So, are FP programs effective? (Lifetime simulations)

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

Simulations evaluated at 1970 govt. health expenditures and 1993 class sizes. Models control for age, migration, place of residency, marital status, husband’s education, year effects, FPP at age 7, regional GDP, Govt. expenditures in FP, edu, health.
So, are FP programs effective? (Lifetime simulations)

I. Controlling for endogenous/selective education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

Simulations evaluated at 1970 govt. health expenditures and 1993 class sizes. Models control for age, migration, place of residency, marital status, husband’s education, year effects, FPP at age 7, regional GDP, Govt. expenditures in FP, edu, health.
So, are FP programs effective? (Lifetime simulations)

I. Controlling for endogenous/selective education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

Simulations evaluated at 1970 govt. health expenditures and 1993 class sizes. Models control for age, migration, place of residency, marital status, husband’s education, year effects, FPP at age 7, regional GDP, Govt. expenditures in FP, edu, health.
So, are FP programs effective? (Lifetime simulations)

I. Controlling for endogenous/selective education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

Simulations evaluated at 1970 govt. health expenditures and 1993 class sizes. Models control for age, migration, place of residency, marital status, husband’s education, year effects, FPP at age 7, regional GDP, Govt. expenditures in FP, edu, health.
So, are FP programs effective? (Lifetime simulations)

I. Controlling for selective education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>
So, are FP programs effective? (Lifetime simulations)

I. Controlling for selective education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No FP program</td>
<td>4.9</td>
<td>4.6</td>
<td>20.0</td>
</tr>
<tr>
<td>With FP program</td>
<td>4.0</td>
<td>5.5</td>
<td>20.9</td>
</tr>
<tr>
<td>FP Program Effect</td>
<td>-0.9</td>
<td>+0.9</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

II. Without controlling for selective/endogenous education:

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP Program Effect</td>
<td>-0.1</td>
<td>+1.2</td>
<td>+0.6</td>
</tr>
</tbody>
</table>
But, how do FP programs compare to education programs?

Education program: Reduction of student-teacher ratio (class size) from 17 (“poor” school) to 12 (“good” school)

<table>
<thead>
<tr>
<th>Total effects (controlling for selective/endogenous education):</th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of “good” schools versus “poor” schools*</td>
<td>+ 0.01</td>
<td>+ 0.3</td>
<td>+ 0.07</td>
</tr>
</tbody>
</table>
But, how do FP programs compare to education programs?

Education program: Reduction of student-teacher ratio (class size) from 17 ("poor" school) to 12 ("good" school)

Total effects (controlling for selective/endogenous education):

<table>
<thead>
<tr>
<th></th>
<th>Number of Children</th>
<th>Years of Education</th>
<th>Age at Marriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of “good” schools versus “poor” schools*</td>
<td>+ 0.01</td>
<td>+ 0.3</td>
<td>+ 0.07</td>
</tr>
<tr>
<td>Complete FP programs versus no FP</td>
<td>- 0.9</td>
<td>+ 0.9</td>
<td>+ 0.9</td>
</tr>
</tbody>
</table>

In a sense, FP Programs are more effective than education programs.
Conclusions (Angeles, Guilkey, and Mroz)

- Effect of FP programs on fertility can be severely underestimated when selective/endogenous schooling is not addressed.
- Data limitations coupled with inadequate analytic approaches could lead to incorrect estimations of program impacts and to wrong policy decisions.
Conclusions (Angeles, Guilkey, and Mroz)

- Effect of FP programs on fertility can be severely underestimated when selective/endogenous schooling is not addressed.
- Data limitations coupled with inadequate analytic approaches could lead to incorrect estimations of program impacts and to wrong policy decisions.
- FP programs influence women’s schooling (increase it) and marriage (delay it), so they have lasting effects on women’s lives.
Conclusions (Angeles, Guilkey, and Mroz)

- Effect of FP programs on fertility can be severely underestimated when selective/endogenous schooling is not addressed.
- Data limitations coupled with inadequate analytic approaches could lead to incorrect estimations of program impacts and to wrong policy decisions.
- FP programs influence women’s schooling (increase it) and marriage (delay it), so they have lasting effects on women’s lives.
- The availability of FP programs when a woman is young is a crucial determinant of many outcomes later in the life cycle.
Conclusions (Angeles, Guilkey, and Mroz)

- Effect of FP programs on fertility can be severely underestimated when selective/endogenous schooling is not addressed.
- Data limitations coupled with inadequate analytic approaches could lead to incorrect estimations of program impacts and to wrong policy decisions.
- FP programs influence women’s schooling (increase it) and marriage (delay it), so they have lasting effects on women’s lives.
- The availability of FP programs when a woman is young is a crucial determinant of many outcomes later in the life cycle.
- In Indonesia during the latter half of the 20th century, improved FP programs appear to have been necessary for the observed, substantively large changes in women’s education, age at marriage, and fertility.