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Abstract
One in three children worldwide have harmfully high lead exposure. Lead-acid batteries are 

the main use of lead by weight, and many are recycled unsafely, but it is uncertain how much of 

human exposure can be traced to this recycling. In this paper, we provide new modelled estimates 

suggesting that around 33% of lead exposure in low- and lower-middle-income countries may come 

from battery recycling, although there remains significant uncertainty. The vast majority of harm 

comes from mass population low-level exposure, rather than localised hotspots. Previous studies 

have typically focused on small populations with high exposure living within hundreds of metres of 

polluted sites, but recent reduced-form quasi-experimental evidence demonstrates smaller negative 

effects for people living within much wider areas, affecting many more people. Our simulation model 

reconciles these approaches, and shows that expanding the area of concern around each recycling 

site increases the estimated share of global lead exposure attributable to battery recycling by an 

order of magnitude, from just 0.50% when considering only the high exposures within a few hundred 

metres of a site.
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1 Introduction

One in three children worldwide have high blood lead levels. One important

source of exposure is Used Lead-Acid Battery (ULAB) recycling. Around 86

percent of all lead by weight is used in these batteries (International Lead and

Zinc Study Group, 2023), and informal unsafe recycling is inefficient, losing up

to half of the lead content to the environment (Kinally et al., 2024). But the

amount of human exposure that can be traced to this trade remains uncertain.

Previous modelling suggests that only a small share of the total health burden

of lead exposure is attributable to battery recycling (Ericson et al., 2016). How-

ever new evidence questions a critical assumption built into that modelling. The

environmental literature suggests that pollution from recycling facilities is quite

localised, and based on this Ericson et al. (2016) model exposure within a 300

metre radius of each site. By contrast recent reduced-form quasi-experimental

studies have demonstrated negative causal effects of exposure to battery recy-

cling sites over much broader areas, of a radius around 5,000 metres.

In this paper we ask what happens to the share of lead exposure burden that

comes from battery recycling if we assume this activity exposes people over a

much wider area. Our hypothesis is that a smaller impact per person over a

much larger affected population could increase the overall share of the burden

attributable to battery recycling by several multiples.

Our approach leans heavily on prior modelling approaches (Ericson et al.,

2016; Kudymowa et al., 2025), but with new data and the critical new assump-

tion about the geographic extent of exposure from each site. First we provide

new estimates of the number of polluted sites due to battery recycling. Here we

add data on new emerging electric vehicles. Second we provide new estimates

of the geographic extent of lead exposure. The ideal dataset would have blood

lead measurements at a wide range of distances from both formal and informal

recyclers. The best available data is the Pure Earth Toxic Sites Identification

Program (TSIP) dataset, which covers a large number of polluted sites but only

has measures of soil lead. We convert this to blood lead using a standard bioki-

netic model, and also triangulate against other studies that do measure blood

lead (but only around formal recyclers), and against the implied blood lead

levels from quasi-experimental reduced-form studies on health and education

outcomes. Third, we use the latest version of the TSIP dataset to estimate the

average population at varying distances from polluted sites.

Overall we find consistent evidence that although exposure does fall steeply
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with immediate distance to a site, low-level exposures do in fact extend to

a much wider radius around polluted sites. Environmental data is consistent

with lead concentration falling in an inverse proportional manner, with rapid

reductions in the immediate vicinity, but low-level exposure continuing over

much greater distances. This is consistent with quasi-experimental reduced-

form studies that estimate effects on educational and health outcomes (Berkhout

et al., 2025; Ipapa, 2023; Litzow et al., 2024; Mahzab et al., 2024; Tanaka et al.,

2022). At the extreme, lead has been shown to travel atmospherically over much

wider distances, for instance from historic Roman smelters to ice in Greenland

(Rosman et al., 1997) and across Western Europe (Schettler and Romer, 2006).

Armed with these new parameters on population exposure, we revisit the

Ericson et al (2016) model on the burden of lead exposure attributable to bat-

tery recycling. Expanding the affected population near ULAB sites from 300

metres to 5,000 metres can increase the share of all lead exposure attributable

to ULAB sites from around 0.5 to 33.28 percent. This compares to Ericson et

al 2016 who estimated around 15 percent of the burden of lead exposure in low-

and middle-income countries in 2013 could be attributed to battery recycling.1

Our estimate is close to a more recent localised and more heavily data-driven

estimate from Dhaka, Bangladesh, that 33 percent of lead exposure in that city

can be attributed to battery recycling Forsyth et al. (2026).

Our estimates come with substantial uncertainty in almost all key parame-

ters. We provide Monte Carlo simulations based on a beta-PERT distribution

which suggest wide confidence intervals, but for which the lower bound excludes

the central estimate of Ericson et al (2016).

Our estimates have important implications for policymakers interested in

tackling lead exposure in low- and lower-middle-income countries. Used-lead-

acid battery recycling shifts from being a marginal to a central contributor to

the overall burden. Further, the majority of the harm comes from low-level

exposure for large populations rather than high-exposure in small populations.

We discuss potential policy solutions in more detail in Section 4.

1Specifically, they estimated that between 127,248 and 1,612,476 DALYs could be at-
tributed to battery recycling in 2013 for the 90 countries for which they had data. The total
lead burden from all sources in 2013 in the same 90 countries was estimated by the Global
Burden of Disease study at 3.2 to 8.6 million DALYs. Taking the mean of both numerator and
denominator gives a value of 14.7 percent. Taking the extremes of the two possible numerators
and denominators gives a range of between 0.01 percent and 50 percent.
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2 Modelling Lead Burden

Our model seeks to estimate the share of lead exposure in low- and lower-middle-

income countries that can be attributed to battery recycling. We estimate this

as the total burden of lead exposure due to battery recycling, measured in

cumulative blood lead levels, as a share of total exposure from all sources (Fuller

et al., 2025). We base our approach on that developed by Ericson et al 2016.

We estimate the ULAB share for each country i as the product of the number of

sites in each country contaminated by used lead-acid battery recycling (Ni); the

level of lead-exposure around each polluted site (E[BLL per person]); and the

number of people exposed to contamination at each site (POP ), all expressed as

a share of total cumulative population blood lead levels (cpBLLi). Cumulative

population blood lead levels are the simple product of total population and

mean blood lead levels (Fuller et al., 2025).

ULAB sharei =
Ni × E[BLL per person]× POP

cpBLLi

(1)

We discuss the data used for each of these parameters in turn.

2.1 The number of polluted sites (N)

We follow Ericson et al. (2016) in using two alternative approaches to estimate

the number of sites polluted by lead-acid recycling in each country. The first is

based on the demand for lead-acid batteries implied by the quantity of vehicles

in each country. The second is based on extrapolating from a unique census of

polluted sites in Ghana.

Estimating polluted sites based on demand for lead

The first approach to estimating the number of polluted sites in a country is

based on demand from vehicles. The main limitation to this approach is the

requirement for data on vehicle usage. We start with the total number of vehicles

estimated to be in use in each country. We use data on road vehicles from the

International Road Federation and World Health Organization, on commercial

vehicles from the International Organization of Motor Vehicle Manufacturers

(OICA, 2024), and on motorbikes from a rental firm Riders Share (2023)2. We

follow the approach of Kudymowa et al. (2025) in expanding the vehicle set to

2Note the vehicle data from the World Bank includes both private and commercial vehicles,
so we subtract the OICA commercial vehicle data to get an estimate for private vehicles.
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include electric three-wheelers, on which we obtain data from various sources

(see Tables A.2 and A.3).

We then estimate the volume of lead produced from each vehicle. For pas-

senger cars we assume that a car battery weighs 20 kg, of which 65% is lead,

and lasts for two years, leading to 6.5 kg of lead produced per year (Table A.2).

Using a similar approach each commercial vehicle is estimated to generate 32.5

kg of lead per year, each motorcycle 1.6 kg, each electric two-wheeler 26 kg, and

each electric three-wheeler 78 kg (this last value is particularly large as these

vehicles have four batteries). For electric two- and three-wheelers, we also as-

sume the proportion that run on lead-acid (as opposed to lithium-ion) batteries

for each country. From these inputs we calculate the total annual weight of lead

generated by vehicle use for recycling.

Overall vehicles account for around 75 percent of all lead-acid battery use,

with the rest coming from uses such as storage batteries for solar energy systems

(Bonnifield and Mallory, 2026; Fortune Business Insights, 2025). We extrapolate

from vehicle to total battery recycling assuming the share of lead generated by

each lead-acid battery application equals its market share.

We make the simplifying assumption of no cross-border trade in batteries.

2023 UN Comtrade data suggest low- and lower-middle income (LMIC) coun-

tries are net importers of ULABs (see Figure A.1), meaning this is a conservative

assumption for our estimation for the total share in LMICs. In this approach

we also ignore legacy abandoned recycling sites that may still be causing harm,

though these are accounted for in the second approach we discuss in the next

section.

We don’t distinguish between formal and informal recycling for several rea-

sons. First there is evidence of harm from formal as well as informal recycling

(Tanaka et al., 2022). Many formal recyclers are unsafe, and there is likely more

of a gradient of harm than a binary distinction. Second, we only have limited

data (for just seven low- and lower-middle-income countries) on formal recycling

(estimated by the U.S. Geological Survey (2022)). For these countries formal

recycling accounts for a relatively small share of all estimated lead production.

To infer the number of recycling operations from national recycled-lead vol-

umes, we adapt the method introduced in Ericson et al. (2016). Their framework

converts total recycled lead into site counts by assuming a distribution of oper-

ation sizes (estimates that are based on expert consultations). Applying their

weights produces a single representative site throughput of around 375 t per

year, which we use as the basis for estimating the number of informal sites in
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each country.

Estimating polluted sites based on population and economy

In addition to the vehicle-based approach in the previous section, Ericson et al.

(2016) also propose a second method that estimates the number of battery

recycling sites from a census of sites in Ghana (Dowling et al., 2016). Using the

site census data we can calculate how many recycling sites operate per capita in

Ghana, and extrapolate to other countries based on population size. The Ghana

study found between 31 and 112 contaminated sites for every million residents,

with 37% of these sites contaminated by lead. We start with the med-point of

these two estimates, or 71.5. We assume 37% of these are contaminated by lead,

and from the TSIP data we calculate that 52% of lead contaminated sites can

be attributed to used lead-acid battery recycling, leaving us with 14 sites per

million residents contaminated by lead from battery recycling.

For comparison two other more recent studies have attempted to exhaus-

tively map polluted battery recycling sites. Forsyth et al. (2026) do this for

Dhaka in Bangladesh. They identify 114 sites contaminated by lead in the city

(through battery recycling, manufacturing, disassembly and repair, and lead

ingot processing). Dhaka has a population of around 10 million people, so this

is around 11 sites per million people. Zimba et al. (2025) finds 92 sites in four

Malawian cities that have a combined population of around 2.5 million people,

so 37 sites per million.

We proceed with 14 sites per million people as a basis for extrapolation to

other countries. We follow Ericson et al 2016 in adjusting the initial estimate

of the number of sites for country-level indicators that correlate with unsafe

recycling. Specifically we compare each country to Ghana on (i) GDP (PPP)

per capita, (ii) the relative size of the informal economy, (iii) the rate of ur-

banization, and (iv) the relative size of the mining, manufacturing, and utilities

sector. Each variable is expressed relative to those of Ghana, such that Ghana’s

variables are all exactly 1. We then take a weighted average of these variables

to produce an overall multiplier, in which GDP per capita receives the largest

weight (0.75), followed by the informal economy size (0.1), urbanization rate

(0.075), and mining and manufacrturing sector (0.075). Data on population

is from the UN World Population Prospects, GDP per capita from the World

Bank, on informality from Elgin et al. (2021), on urbanization from UNDP, and

on manufacturing from the United Nations Statistics Division.
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Comparing approaches

Using vehicle data we can produce estimates for 58 out of the 75 low- and

lower-middle-income countries. With the top-down approach we can produce

estimates for 74 countries. The correlation between the two estimates is 0.88

(see Figure A.1). For our main estimate we use the simple average of the two

methods.

Ultimately we estimate a total of around 24,318 polluted sites. By compari-

son Ericson et al estimated between 10,599 and 29,241 depending on approach.
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2.2 Average lead exposure around each site

How much lead is the average person living near a battery recycling site exposed

to? Our main approach to estimating this is using data on soil lead levels at

varying distances from recycling sites, and then using a biokinetic model to

convert from soil to blood lead.

Data on soil lead from the Toxic Sites Identification Program

Direct measures of soil lead exposure around polluted sites are available from

the Toxic Sites Identification Program (TSIP) run by the NGO Pure Earth

(Caravanos et al., 2014; Ericson et al., 2013). This is a major global effort to

identify the most dangerous polluted sites around the world. We have little

understanding of the degree of representativeness of this dataset, as there is no

single standardized approach to identifying sites, as each country establishes

its own priorities and methods, but sources of information include requests

or concerns from local authorities or national government agencies, reports of

incidents or alerts from affected communities, findings from government agencies

or academic research, and news or media coverage. The database includes both

active and inactive legacy sites. We use the version of the database downloaded

in January 2025. This is an updated version of the same source used in previous

modelling efforts (Ericson et al., 2016). Prior efforts estimated the degree of

environmental contamination from polluted sites based on 28 assessments from

12 countries. From the full database of 1,672 sites we retain only battery-

recycling sites that have both soil lead measurements and GPS coordinates.3

Because measurements from nearby sites can overlap spatially and confound

distance-decay estimates, we further restrict the sample so that all included

sites are at least 10 km apart. After applying these filters we analyse 5,189

measures from 599 sites in 14 countries. Of these, 82 percent of measures are

within 165 metres of the centre of the polluted site. The mean lead measurement

within 165 metres is 13,162 parts per million (ppm), compared to 6,526 for those

outside 165 metres. 64 percent of measurements within 165 metres are above

the 200 ppm regulatory threshold, and 57 percent of measurements outside of

165 metres are above this threshold.

To isolate contamination attributable to battery-related activities, we sub-

3Specifically, we keep sites in which the ‘key pollutant’ variable is ‘lead’ and in which the
‘site industry’ description contains ‘Lead - Battery Recycling’, ‘Lead-acid battery manufac-
turing’, or ‘Lead Smelting’
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tract a background soil lead level of 41.8mg/kg, the median urban soil lead

across 32 Indian cities from a country-wide study (Adimalla, 2020). We choose

this value because India, Indonesia, and Bangladesh account for 32%, 25%, and

23% of the TSIP battery-site sample respectively and among these, India has

the only representative soil measurements in a recent systematic review of lead

in soil (Mishra et al., 2025). We then set non-positive values to a small positive

constant (1×10−5) to preserve observations while enabling log transformations.

We follow Ericson et al. (2016), in using this data to predict lead levels

within various radii around sites. We first define a near ring as a radii of 165 m

(this is the weighted average of the three rings used by Ericson et al, at 100m,

200m, and 300m). We then add a second concentric ring, from 165–5,000m.

We use 5,000m as the cut-off on the second ring for two reasons; first it is on the

lower end of the quasi-experimental literature effect bandwidths, and second as

our main fitted model of the TSIP data would reach 200mg/kg (the US EPS

recommended residential soil lead screening level) at around 5,800 meters when

background lead is not subtracted. Our model asymptotes to background levels

of 42mg/kg at 170,000 meters. We model other radii as sensitivity in Appendix

C.2.

Table 1: Data on distance to sites and environmental lead
Lead Log Lead

(1) (2) (3) (4) (5) (6) (7) (8)

Distance (m) -22.7*** -0.0***
(8.5) (0.0)

Inverse distance (m) 28504.7*** 2.3***
(4461.5) (0.2)

Log distance -7637.1*** -6275.8** -0.6*** -0.5***
(1285.6) (2628.9) (0.0) (0.1)

Obs. 5,172 5,172 5,172 1,288 5,172 5,172 5,172 1,288
R2 0.20 0.21 0.22 0.20 0.63 0.64 0.66 0.64

Note: This table presents alternative specifications for estimating the relationship between
measured environmental lead and distance to a battery recycling site. The outcome in columns
(1)–(4) is soil lead parts-per-million (ppm), and the outcome in columns (5)–(8) the log of soil
lead (where values of zero are replaced by 0.00001). Columns (4) and (8) restrict observations
to those in which there is no other polluted site within 10,000 m. All models have site fixed
effects. * p<0.1, ** p<0.05, *** p<0.01

Ericson et al. (2016) estimate the average lead concentration in soil within

165m at 2,050mg/kg. The updated TSIP database has extremely high lead

values that would skew the mean, and the data is not evenly distributed across

our radii categories. Therefore we choose to first fit a curve through the data

to predict expected lead levels. We estimate various models with different func-

tional forms, selecting the model with the best fit. The best fit is a log-log
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specification, including site fixed effects (Table 1) i.e. a power law:

ŷ(r) = exp(α) rβ (2)

where ŷ(r) is predicted soil lead (mg/kg) at distance r (metres) from the site

centre; α is the estimated intercept (with site fixed effects); and β is the slope in

the log–log regression. To translate from predicted values in logs back to levels

we use Duan’s smearing retransformation (Duan, 1983). Our average exposure

for each zone is the area-weighted mean over a disk (see Appendix E for more

detail).

From environmental to human exposure

To estimate the blood lead levels from soil lead exposure, we employ the All-

ages Lead Model (AALMv3), from U.S. EPA, which estimates BLLs based on

environmental exposures. One important adjustment is that we expect ingestion

rates to be higher in low- and middle-income countries than in the United States,

as children may be less likely to have improved flooring inside, and spend more

time outside with fewer solid surfaces. Ericson et al. (2016) multiplied the U.S.

EPA defaults by three for children and by four for adults to reflect this. They

cite evidence of greater hand-to-mouth behaviour in Native American tribes

(Harris and Harper, 2004) that predicted soil ingestion values to be around 400

mg/day for children and adults in rural LMICs as an upper bound of the US

EPA standards of the time. Since then, EPA defaults have been updated to

incorporate newer empirical data showing substantially lower age-specific soil

and dust ingestion in the US, about 60 percent of the original defaults (U.S.

Environmental Protection Agency, 2021).4

Because our goal is to represent LMIC exposures, we multiply the AALMv3

soil ingestion defaults by three. Recent field data indicate that even this tripling

is conservative: Yang et al. (2022) measured median soil ingestion of about 150

mg/day for children in an e-waste community in China, while Kwong et al.

(2021) reported geometric-mean intakes of roughly 160–230 mg/day for toddlers

in rural Bangladesh. Our threefold adjustment therefore errs on the side of

caution yet remains within the range of empirically observed LMIC exposures.

Our chosen ingestion rates are shown in Appendix A.5, along with a comparison

4These new estimates are in the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK)
model (U.S. Environmental Protection Agency, 2021). The All-Ages Lead Model (AALMv3)
also adopts these more recent, lower baseline ingestion rates.
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of previous default EPA rates and Ericson et al. (2016). We test sensitivity of

ingestion rates in Appendix C.2.

We assume that soil accounts for 50% of the exposure caused by a site, with

other known pathways such as water, air and food contamination combining to

cause the other half of exposure. This assumption comes from taking a midpoint

of limited heterogeneous evidence. Studies near lead-polluting sites report mixed

pathway shares: some find soil and dust ingestion to be the primary contributor

to lead exposure (Giubilato et al., 2025; Zhang et al., 2016), others observe

roughly equal contributions from soil and food (Qu et al., 2012), and some

identify food as the primary pathway (Gao et al., 2023; Cao et al., 2015). Given

this assumption, we double the AALMv3 lifetime BLL estimate to capture total

pathway exposure. We test sensitivity of this assumption in Appendix C.2.

Table 2: Population, Soil Lead, and Predicted Blood Lead by Distance from
Recycling Sites

Ericson et al. (2016) This study

Radii (m) Pop Soil (mg/kg) BLL (µg/dL) Pop Soil (mg/kg) BLL (µg/dL)

0–165 750 2,050 21–31 491 1,684 13.20
165–5000 – – – 335,600 206 1.7

Note: This table presents differences in key parameters between our study and Ericson et al. (2016).
For Ericson et al. (2016) BLLs are a geometric mean of 21.2µg/dL for adults and 31.15 µg/dL for chil-
dren. Soil is calculated by multiplying the soil concentration of their three modelled bands (850mg/kg,
2500mg/kg, and 5000mg/kg) with their stated relative frequencies (0.5, 0.35, and 0.15 respectively).
We calculate their average population by multiplying the population of their three modelled site sizes
(200, 1000, 2000) with their stated relative frequencies (0.5, 0.35, and 0.15 respectively). Whilst Ericson
et al don’t express their results in terms of cumulative population blood lead levels (cpBLL), we can
approximate this by multiplying their mean population exposure of (6,094,463 + 16,814,100)/2 = 11
million by their mean blood lead levels of 26µg/dL (the simple mean of child and adult levels), so 11 x
26 = 286 million cpBLL.

Comparing to other data sources

There are two ways we can benchmark our estimates. First, we review studies

that do directly measure blood lead near polluted sites. Second, we calculate

the blood lead level implied by quasi-experimental reduced-form estimates on

test scores.

Forsyth et al. (2026) found that blood lead of children in Dhaka was 50%

higher for those living within 1 km, and 24% higher for those within 1–2 km, of

a battery recycling or lead industry site, compared to children living more than

5 km away. Differences beyond 2 km were not statistically significant, though
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this may reflect limited statistical power to detect smaller effects at greater

distances. Other studies of battery recycling sites have focused primarily on

populations living very close to emission sources, often within a few hundred

metres (Chowdhury et al., 2021; Etiang et al., 2018; Irawati et al., 2022; Lu-

mumba et al., 2024), and therefore provide limited information about impacts

at larger distances. Chowdhury et al. (2021) find median soil concentrations

of 1400mg/kg and median blood lead levels of 21.3 µg/dL within 200 m of an

abandoned informal used lead acid battery recycling site in Bangladesh. Irawati

et al. (2022) find average blood lead levels in a village in Indonesia with ULAB

recycling of 17 µg/dL. Every sample taken in one study in the heavily polluted

village of Dong Mai in Vietnam was above 10 µg/dL (Daniell et al., 2015).

Machmud et al. (2025) found that 61% of children living within 200 m of a re-

cycling site in Indonesia had BLLs above 10 µg/dL, compared with 31% among

those 200–250m away. Similarly, Zhang et al. (2016) observed a decrease from

15 to 7 µg/dL between 250 m and 1 km in China. These studies demonstrate

steep exposure gradients near battery recycling operations but provide little

evidence regarding effects beyond approximately 1–2 km.

Several studies estimate the relationship between blood lead and distance to

other types of lead industry such as mines and large formal smelters (Garcia-

Vargas et al., 2014; Hegde et al., 2010; Paoliello et al., 2002; Willmore et al.,

2006; Mandić-Rajčević et al., 2018). Paoliello et al. (2002) for example find

blood lead within 2 km of a refinery in Brazil is 11.25 µg/dL, and 4.4 µg/dL in

surrounding urban areas within 50 km.

We can also compare to the blood lead levels implied by observed test score

impacts in reduced-form studies. These studies measured effects at distances of

2–10 km away. Here we use the estimated relationship between test scores (T )

and blood lead (B) from Crawfurd et al. (2024), who find a meta-analytic effect

(β) of 0.12 standard deviations per log unit increase in blood lead level.

T = α+ β lnB, β = −0.12 (3)

Combined with estimates of mean blood lead level (BLL) from IHME, we

can calculate the implied change in blood lead (∆BLL) associated with the

estimated test score impacts from the quasi-experimental reduced-form studies

(∆T ), as follows:

∆BLL = BLL
(
exp(∆T/β)− 1

)
. (4)
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This works out as around 3 µg/dL for Berkhout et al. (2025), 0.6–1.1µg/dL
for Ipapa (2023), and 1.7–1.9 µg/dL for Litzow et al. (2024) (Table D.1), all

close to our main estimate of 1.7 µg/dL.
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2.3 Estimating population around each site (POP)

To estimate the number of people living in proximity to lead-acid battery re-

cycling sites, we overlay observed site coordinates from the TSIP database on

high-resolution gridded population data (CIESIN, 2018). For each site we con-

struct concentric buffer zones at varying radii and sum the resident population

within each zone. As we are missing data on the location of most sites, we esti-

mate here the average population around each site and multiply this figure by

the estimated number of sites in each country. One complication is that buffers

around nearby sites overlap. We assume that exposures are additive, which

aligns with our main outcome being cumulative population blood lead levels.

Additivity can be assumed because the relationship between soil lead concen-

tration and blood lead level is approximately linear over the relevant range of

soil concentrations-up to ten times our study average (Appendix A.2).

But we are also interested in the number of unique people affected by battery

recycling operations. In order to count the number of unique people we can

construct the union of sites and count population within this. But this is further

complicated because our dataset includes only a fraction of all existing sites in

each country, requiring us to adjust for both observed and unobserved overlap.

For the inner ring of 165 m there is minimal overlap between sites as these

rings are sufficiently small. For the outer-most ring of 165–5000 m there is

substantial overlap between the rings around different sites. To extrapolate

population exposure beyond the observed sites, we need to estimate the location

of the unobserved sites. We use an inhomogeneous Poisson point process with

intensity proportional to local population. For each country, we (i) build a

study domain around the observed points (convex hull + buffer, clipped to

the national boundary); (ii) convert gridded population density to people-per-

cell; (iii) keep the observed sites fixed; and (iv) simulate additional sites up to

the country’s estimated total number, by sampling grid cells with probability

proportional to population. For each simulation we rasterize the 165–5000 m

ring around all (observed + simulated) sites onto the population grid and sum

unique population in the ring. Repeating this Monte Carlo step yields the

expected unique population covered in the wide ring. This estimator reflects

urban concentration better than a homogeneous Poisson rarefaction and avoids

the downward bias from treating observed clusters as a random sample. Key

assumptions are that population is a reasonable proxy for site intensity and that

the domain captures where unobserved sites can plausibly occur.
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3 Results

As there are a large number of assumptions and uncertainty that go into our

model, we assess the impact of this parameter uncertainty using a Monte Carlo

approach with a Beta-PERT distribution. This approach is widely used in cost-

benefit and risk analysis, and provides a representation of uncertainty based on

intuitive subjective inputs: the minimum, most likely, and maximum values of

each parameter. We sample values for each parameter independently.

Here we present sensitivity to adjustments in our four main parameters.

In the numerator, cumulative population blood lead levels (cpBLL) are the

product of the number of sites, average blood lead increases due to each site,

and the number of people affected by each site. The denominator is the cpBLL

attributable to all sources.

First, for the number of sites, we use the global total across the 75 low

and lower-middle income countries for which we have estimates, which is 24,318

sites. We show sensitivity to increasing or decreasing this amount by 50%.

Second, for blood lead levels, our baseline estimate uses an average exposure

level within 5km of 1.7µg/dL. Here we again present scenarios increasing or

decreasing this amount by 50%.

Third, our baseline population estimate is that 335,600 people live within 5

kilometres of the average site. One point of comparison here is Forsyth et al.

(2026) who find that 5 million people live within 2km of the 71 sites in Dhaka,

or 70,000 per site (assuming no overlap). We again present estimates varying

this by ±50%.

Fourth, for the total cpBLL attributable to all sources we use the total

for low- and lower-middle income countries from the IHME Global Burden of

Disease (GBD) Study (GBD, 2025). This is a slight update to the GBD 2021

numbers used by Fuller et al. (2025). There is substantial structural uncertainty

here given sparse underlying data from LMICs, so we again vary this amount

by ±50% relative to the central estimate.

Figure 1 shows the distribution of estimates of the share of lead exposure

attributable to lead-acid battery recycling. Whilst there is substantial uncer-

tainty, the lower bound of the 95 percent confidence interval around our central

estimate is above the earlier estimates from Ericson et al. (2016) The modal

estimate is around 33.28 percent of the burden. 80 percent of our estimates fall

within 26–71 percent of the burden.

15



Figure 1: Estimated share of lead exposure attributable to used lead-acid bat-

tery (ULAB) recycling
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Note: This figure presents the distribution of estimates across 50,000 simulations with

varying independent draws for each of the four key parameters. Vertical dashed lines

indicate the 95% confidence interval.

In Table 3 we show the breakdown of our central estimates by world region.

We show the total estimated number of sites, unique number of exposed people,

total cumulative population blood lead levels (cpBLL) attributable to ULABs

for the inner close ring (0–165 m), and the wider ring (0–5000 m), and the total

estimated cpBLL from all sources. Overall we see an increase by two orders of

magnitude in estimated lead exposure from battery recycling by widening the

radius of exposure, from 0.50% to 33% . The region with the largest exposure

from battery recycling is sub-Saharan Africa, with over 3 billion cpBLLs, ac-

counting for over half of all lead exposure in the region. The share of the burden

is also over half for South Asia, and for other regions is between a quarter and

a third.
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Table 3: Main results

Region Sites Exposed People (Unique) cpBLL (Million, additive) Shares (%)

0–165m 165–5000m 0–165m 0–5000m All Sources 0–165m 0–5000m

Central Asia 341 159,513 5,589,208 2.2 97.1 274.9 0.8 35.3

East Asia and Pacific 3,174 1,485,781 71,887,207 20.6 1,239.7 1,974.6 1.0 62.8

Latin America and Caribbean 318 148,920 7,096,333 2.1 122.4 370.6 0.6 33.0

Middle East and North Africa 2,414 1,129,890 55,652,101 15.7 959.3 3,283.3 0.5 29.2

South Asia 10,294 4,818,257 306,102,983 66.8 5,253.1 16,565.7 0.4 31.7

Sub-Saharan Africa 7,777 3,639,930 158,021,988 50.5 2,731.3 8,785.9 0.6 31.1

Total 24,318 11,382,292 604,349,820 157.8 10,402.9 31,255.0 0.5 33.3

Note: This table presents estimates by region of the number of polluted sites, total unique exposed people within two rings, cumulative

population blood lead levels, and the estimate share of all blood lead levels attributable to used lead-acid battery recycling (ULAB) sites.

Shares use the denominator of cpBLL from all sources shown in column (6). Estimates reflect only LMIC countries within each region.
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Table 4: Main Inputs Comparison

Ericson et al. (2016) Ericson et al. (2016) This study This study
(0–165 m) (0–165 m) (0–165 m) (165–5000 m)

(lower estimate) (higher estimate)

Number of sites 10,599 29,241 24,318 24,318
Average BLL per site 21 21 13.2 1.7
Population exposed per site 750 750 491 335,600
Cumulative BLL 166,934,250 460,545,750 157,761,710 10,487,724,403
% share of lead poisoning* 0.53 1.53 0.5 33.28

*Shares are calculated using a denominator cpBLL of 30,100,000,000.
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In Table 4 we show the comparison of our inputs to the main equation with

those of Ericson et al. (2016).

We can also express the total number of 10 billion cumulative popula-

tion blood lead levels from battery recycling in terms of health and educa-

tion impacts. The IHME estimate that 19 million disability-adjusted life years

(DALYS) are attributable to lead exposure in low- and lower-middle income

countries. A 33.28 percent share of this is equal to 8 million DALYs. Larsen

and Sánchez-Triana (2023) estimate 2.4 million annual deaths from cardiovas-

cular disease and 543 million IQ points lost due to lead exposure in low- and

lower-middle-income countries. A 33.28 percent share of this due to battery

recycling is equal to 807,471 annual deaths, and 181 million IQ points lost, or

millions of learning-adjusted years of school (Angrist et al., 2025).
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4 Policy solutions

These new estimates of the share of the burden of lead exposure attributable to

ULAB recycling implies a higher priority for policy efforts to tackle this source of

exposure vis-a-vis other common sources. The challenge with battery recycling

is that unlike with many consumer products in which bans and enforcement

are the obvious policy routes, battery recycling is highly economically valuable.

Specific remediation efforts have been shown to be feasible at cleaning up the

most contaminated sites (Chowdhury et al., 2021; Ericson et al., 2018), but the

much broader spread of small effects imply a different set of solutions.

4.1 National action

The main priority for action is by national governments. Brazil has been hailed

as one potential role model on action to address unsafe lead-acid battery recy-

cling. Through a series of reforms implemented between 2008 and 2019 Brazil

transitioned from an unsafe informal industry to a formal and safer one. The

heart of this was a mandate for firms to buy-back or collect and recycle sold

batteries. This was accompanied by eliminating taxes to make the formal sector

more competitive with the informal sector (for more detail see Smith (2024)).

The tax reduction seems to have been important, as a buy-back policy in India

without the tax reduction did not seem to be effective (Pawar, 2025). More ev-

idence is needed on the effectiveness of other ‘extended producer responsibility’

schemes. Further investigation of other models may also be needed in smaller

countries that don’t have domestic battery production. In many countries reg-

ulation already exists on safe recycling practices, and so increased enforcement

against unsafe industry could play a useful role. Kundu et al. (2025) show in-

formation asymmetries in the market for batteries that policy could usefully

address.

4.2 International action

International buyers of lead can potentially play a complementary role. Mil-

lions of dollars of lead are purchased annually by firms in the United States

from West Africa. Improved due diligence rules could require larger buyers to

map out supply chains, including auditing smelters and only purchasing from

suppliers that meet existing international guidelines (such as the United Nations

Basel convention). International actors might also provide technical assistance
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to governments on better regulation, or directly to large formal recyclers to

encourage safer practices.

Beyond the battery recycling industry, improved public health monitoring,

including critically more blood lead testing, can empower individuals to avoid

lead exposure and demand safer practices.
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5 Conclusion

In this paper we revisit previous estimates of the burden of lead exposure in low

and lower-middle-income countries that is attributable to used lead-acid battery

recycling. Updating prior modelling with new data on the extent of dispersion

of lead suggests that the contribution of battery recycling could be significantly

higher than previously thought. Though our central estimate is around a third

of all exposure, we are unable to provide a very precise estimate due to the

number of uncertain factors. Nonetheless evidence increasingly suggests that

used lead-acid battery recycling affects massive numbers of people.

Our estimates have several limitations. Many of the key parameters are

unknown. We don’t know exactly how many battery recycling sites there are,

how many people are exposed to lead at each site and by how much.

Future research would be valuable in improving our certainty, by providing

new data on several of the parameters in this model. Our estimate of the number

of polluted sites in many countries is based in part on just one exhaustive census

(Dowling et al., 2016). More similar studies would allow us to increase our

confidence in those estimates, as would better data on demand for lead from

vehicles.

Our estimate of the average lead burden from recycling sites comes primarily

from the Toxic Site Identification Program (TSIP), which includes data from

just 13 countries. This database may be biased towards more visible and there-

fore larger polluting sites. The method for collecting soil may bias towards

finding samples with higher lead concentrations—the TSIP Investigator Hand-

book (Pure Earth, 2017) mentions targeting “sampling at suspected ‘hotspots’

such as residential areas adjacent to a contamination source”. Data on the loca-

tion of more sites would also increase our confidence in the average population

exposed to sites. We also rely on very uncertain estimates of the background

level of soil lead in developing countries, based on just one study, and on the

level of ingestion of soil in developing countries, based on just two studies.

Our model relies on soil lead data, converted to blood lead via the All-Ages

Lead Model (AALM) biokinetic model. We assume soil ingestion accounts for

roughly half of the total exposure from a site. The relative contribution of each

exposure pathway remains understudied.

Future research should also look further at other avenues to address the lead

source apportionment question, such as isotopic fingerprinting, combining natu-

ral experiments with direct lead measurement (such as bone lead which provides
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estimates of cumulative exposure), and randomized remediation interventions.

Above all more evidence is needed on what policies and actions are most

effective and cost-effective in improving the safety of lead battery recycling, and

reducing lead exposure.

What is clear is that battery recycling is a significantly larger problem than

previously thought. This has implications for actors focused on reducing lead

exposure, who might want to update at the margin and reallocate some part

of their portfolio towards developing solutions for battery recycling, despite the

remaining uncertainty in the overall share of the burden.
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mental and take-home lead exposure in children living in the vicinity of a lead

battery smelter in serbia’, Environmental Research 167, 725–734. Accessed 6

November 2025.

URL: https://doi.org/10.1016/j.envres.2018.08.031

Mishra, P., Ali, S., Kumar, R. and Shekhar, S. (2025), ‘Global lead contamina-

tion in soils, sediments, and aqueous environments: Exposure, toxicity, and

28



remediation’, Journal of Trace Elements and Minerals 14, 100259.

URL: https://doi.org/10.1016/j.jtemin.2025.100259

OICA (2024), ‘Vehicles in use’, https://perma.cc/XA7B-4P9B.

Paoliello, M. M. B., De Capitani, E. M., da Cunha, F. G., Matsuo, T., Carvalho,

M. d. F., Sakuma, A. and Figueiredo, B. R. (2002), ‘Exposure of children to

lead and cadmium from a mining area of Brazil’, Environmental Research

88(2), 120–128.

Pawar, P. (2025), ‘Lead-acid batteries are poisoning the global south. here are

3 proven ways to stop that.’.

URL: https://www.vox.com/future-perfect/462703/lead-batteries-poisoning-

solutions-brazil-epr-policy

Pure Earth (2017), Toxic sites identification program (tsip) investigator

handbook, Technical report, Pure Earth, New York, NY. Revised March

2019.

URL: https://www.pureearth.org/wp-content/uploads/2023/11/TSIP-

Investigator-Handbook-2017.pdf

Qu, C.-S., Ma, Z.-W., Yang, J., Liu, Y., Bi, J. and Huang, L. (2012), ‘Hu-

man exposure pathways of heavy metals in a lead-zinc mining area, jiangsu

province, china’, PLOS ONE 7(11), e46793.

URL: https://doi.org/10.1371/journal.pone.0046793

Riders Share (2023), ‘How many motorcycles are there in the world?’. Accessed

December 9, 2025.

URL: https://www.riders-share.com/blog/article/number-motorcycles-

world-top-countries

Rosman, K. J. R., Chisholm, W., Hong, S., Candelone, J.-P. and Boutron,

C. F. (1997), ‘Lead from carthaginian and roman spanish mines isotopically

identified in greenland ice dated from 600 b.c. to 300 a.d.’, Environmental

Science & Technology 31(12), 3413–3416. First evidence of ancient large-

scale atmospheric Pb pollution via Greenland ice core.

Schettler, G. and Romer, R. L. (2006), ‘Atmospheric pb-pollution by pre-

medieval mining detected in the sediments of the brackish karst lake an loch
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A Additional Tables and Figures

A.1 Tables

Table A.1: Trade Balance of ULAB-Related Products for LIC/LMICs

Product Exports to Exports to Imports to Net Imp.

LIC/LMICs UMIC/HICs UMIC/HICs

Waste batteries

(HS 854810)
147,738.1 11,639.9 275,936.4 116,558.4

Lead waste & scrap

(HS 780200)
18,583.5 9,327.2 128,033.2 100,122.5

Note: Net imports = imports from UMIC/HICs minus total exports. Positive values

indicate LIC/LMICs are net importers. The data is from 2023 UN Comtrade (Smith, 2025).

Table A.2: Lead generated per vehicle

Vehicle type Battery

weight

(kg)

Batteries

per

vehi-

cle

Service

life

(years)

Lead

per

year

(kg)

Source

Passenger car 20 1 2 6.5 Tür et al. (2016)

Commercial vehicle 50 2 2 32.5 Tür et al. (2016)

Motorcycle 5 1 2 1.6 Two Tyres (2024)

Electric two-wheeler 40 1 1 26 Tran et al. (2023)

Electric three-wheeler 30 4 1 78 Table A.3

Note: We assume for all vehicle types that the lead content by weight of each battery is 65

percent. Our estimate of battery life for electric three-wheelers is supported by recent

research from Bangladesh (Kundu et al., 2025).
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Table A.3: Data sources for electric three-wheeler battery weight

Source Weight per battery

https://www.zunaxenergy.in/electric-
rickshaw-batteries.html

25–30 kg

https://www.thesupermexx.com/product/
intelligent-e-rickshaw-battery/

25.6 kg (46.5 kg for a whole
pack at 40–50% of weight of
lead-acid equivalent, mean-
ing 103 kg for 4 lead-acid
batteries)

http://www.getekbatteries.com/heavy-e-
rickshaw-battery-3552243.html

10–25 kg

https://www.ujalapowers.com/ups-12000-
electric-rickshaw-batteries-1954218.html

38 kg

https://www.tradeindia.com/products/80-
ah-acid-lead-e-rickshaw-battery-with-9-5-kg-
weight-8256648.html

9.5 kg

https://www.indiamart.com/proddetail/
140ah-e-rickshaw-battery-16258649291.html

33.3 kg

https://www.ujalapowers.com/er-13000-
electric-rickshaw-batteries-6884489.html

31 kg

Table A.4: Distance-Decay Function by Country
(1) (2) (3) (4) (5) (6) (7)

Bangladesh Georgia India Indonesia Other All All

lndist -0.879*** -1.144* -0.466*** -0.606*** -0.121** -0.377*** -0.614***
(0.0520) (0.587) (0.0691) (0.162) (0.00534) (0.0985) (0.0495)

Obs. 1,493 308 1,382 1,329 59 601 5,172
R2 0.60 0.36 0.71 0.59 0.16 0.61 0.66

Note: This table presents estimates of the relationship between log distance and log soil
lead by country. We pool together countries with fewer than 100 data points each (these
are Brazil, Colombia, Ghana, Kenya, Kyrgyzstan, Madagascar, Mongolia, Philippines, and
Senegal). Alternative specifications for the full sample are shown in Table 1. All models have
site fixed effects and standard errors clustered by sites.
* p<0.1, ** p<0.05, *** p<0.01

33

https://www.zunaxenergy.in/electric-rickshaw-batteries.html
https://www.zunaxenergy.in/electric-rickshaw-batteries.html
https://www.thesupermexx.com/product/intelligent-e-rickshaw-battery/
https://www.thesupermexx.com/product/intelligent-e-rickshaw-battery/
http://www.getekbatteries.com/heavy-e-rickshaw-battery-3552243.html
http://www.getekbatteries.com/heavy-e-rickshaw-battery-3552243.html
https://www.ujalapowers.com/ups-12000-electric-rickshaw-batteries-1954218.html
https://www.ujalapowers.com/ups-12000-electric-rickshaw-batteries-1954218.html
https://www.tradeindia.com/products/80-ah-acid-lead-e-rickshaw-battery-with-9-5-kg-weight-8256648.html
https://www.tradeindia.com/products/80-ah-acid-lead-e-rickshaw-battery-with-9-5-kg-weight-8256648.html
https://www.tradeindia.com/products/80-ah-acid-lead-e-rickshaw-battery-with-9-5-kg-weight-8256648.html
https://www.indiamart.com/proddetail/140ah-e-rickshaw-battery-16258649291.html
https://www.indiamart.com/proddetail/140ah-e-rickshaw-battery-16258649291.html
https://www.ujalapowers.com/er-13000-electric-rickshaw-batteries-6884489.html
https://www.ujalapowers.com/er-13000-electric-rickshaw-batteries-6884489.html


Table A.5: Comparison of Soil Ingestion Assumptions: Ericson et al. (2016) vs.

This Study

Ericson et al. (2016) This Study

Age group Default LMIC Adjusted Default LMIC Adjusted

From 0 years 38.75 255 — —

From 1 year 60.75 405 — —

From 2 years 60.75 405 — —

From 3 years 60.75 405 — —

From 4 years 45.00 300 — —

From 5 years 40.50 270 — —

From 6 years 38.25 255 — —

Adults (17+) 50 200 — —

From 0 years — — 18 54

From 0.25 years — — 32 96

From 1 year — — 41 123

From 5 years — — 36 108

From 10 years — — 27 81

From 15 years — — 14 42

Notes: Ingestion units are mg/day. Default refers to the default soil ingestion values in the

model used. Ericson et al. (2016) used the IEUBK version 1 for children aged 0–7 and ALM

version 1 for adults aged 17–64. Our study used the AALMv3 for all ages (0–64). Ericson

et al. (2016) state that the IEUBK average soil ingestion is 85–135 mg/day, but this is in

fact referring to a combined ingestion of soil and dust.
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A.2 Figures

Figure A.1: Comparison between alternative methods for estimating number of

polluted sites per country
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Note: This figure shows the log number of sites estimated for each of the 57 countries for

which we have data by two alternative approaches, a top-down approach on the y-axis and a

bottom-up approach on the x-axis. The correlation between raw numbers is 0.88. The yellow

line is the line of equality.
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Figure A.2: Soil lead and distance to polluted sites in the Pure Earth global

database
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Note: This figure plots data from the Toxic Sites Identification Programme downloaded in

January 2025.

Figure A.3: Soil lead and Blood lead relationship in AALMv3
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Note: This figure shows the AALMv3 output of average lifetime (ages 0-64) blood lead from

soil lead input values up to 10 times the average soil used our the model. The linear

relationship observed here is our justification for assuming additivity of exposure from

multiple sites.
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B Model Specification and Simplifying Assump-

tions

We make a number of adjustments and simplifying assumptions to the model

developed by Ericson et al. (2016), which we list here.

B.1 Number of sites

In estimating the number of polluted sites based on vehicle demand, we add a

common new vehicle type to those considered by Ericson et al. (2016)—electric

three-wheelers. They estimate a total number of estimated sites at 10,599 from

the vehicle demand method and 29,241 from the Ghana census-extrapolation

method. We estimate a total of 57,774 (Table 3).

We model a single recycling site size rather than three different sizes. Ericson

modelled three sizes of sites (outer exposure distance of 100m, 200m, 300m) with

frequency ratios of 0.5, 0.35, 0.15 respectively. We modelled the average of this

to be 165 m. This does not change the main results of the model.

B.2 Average exposure

We enter soil lead concentrations directly into the AALMv3 and use the model’s

single 0–64-year population average without applying any demographic weight-

ing. For example, a soil lead level of 500mg/kg gives an AALMv3 output of

0.684 µg/dL as the average blood-lead level across ages 0–64, and we assign

that value to everyone in our exposure model. Because the AALMv3 already

incorporates age-specific physiology before producing this mean, our approach

captures children’s higher biological uptake within the 0–64 average itself. How-

ever, it does not adjust for the younger age structure of low- and middle- in-

come countries. By contrast, following Ericson et al. (2016) by splitting ages

and using a soil lead level of 500mg/kg would give AALMv3 age-group means

of 2.0 µg/dL (0–6 years), 0.86µg/dL (7–16 years), and 0.87µg/dL (17+ years),

then weighting them by typical LMIC demographics, 15 percent aged 0–6, 25

percent aged 7–16, and 60 percent aged 17+, would yield a weighted average

of about 0.77 µg/dL. Our simpler method therefore underestimates the LMIC

population-wide average by roughly 10%.

37



C Robustness

We make a number of adjustments and simplifying assumptions to the model

developed by Ericson et al. (2016), which we list here.

C.1 Number of sites

In Figure C.1 we show the responsiveness of the estimated share of lead burden

to changes in the estimated number of polluted sites, holding other parameters

constant.

Figure C.1: Battery-recycling share of lead burden and number of polluted sites
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Note: Holding the Average BLL (1.7) and the population exposed (335,600) constant. The

x-axis range shows 50% above and below our preferred estimate.

C.2 Average exposure

Our average blood lead level input is generated using the AALMv3 model, which

converts soil lead concentrations to average BLLs for ages 0–64. At the soil levels

we model (0–2500mg/kg), the AALM output scales linearly with soil ingestion

rate, allowing us to express average BLL from soil as a product of three terms:

Avg BLLsoil = Avg Soil Lead×Avg Soil Ingestion Rate× Conversion Factor.
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And we can express the BLL from all sources as:

Avg BLLall = Avg BLLsoil × Soil Share of All Exposure Pathways.

We conduct sensitivity analyses on each of these four underlying components,

first using a probabilistic Monte Carlo method drawing each parameter from a

distribution (as in Section 3). We then show how blood lead levels respond to

each individual parameter whilst holding the others constant in a deterministic

model. Figure C.2 shows the Monte Carlo results, Figure C.3 varies soil lead

concentration, Figure C.4 varies soil ingestion rate, Figure C.5 varies the soil-

to-BLL conversion factor, and Figure C.6 varies the share of total exposure

attributed to soil ingestion.

Figure C.2: Estimated effect on blood lead levels within 5km of a polluted site
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Note: This figure presents the distribution of estimates of blood lead levels across 50,000

simulations with varying independent draws for each of four underlying model parameters;

(i) the soil lead level, (ii) the soil ingestion rate, (iii) the soil to blood lead conversion rate,

and (iv) the soil share of all exposure pathways. Each parameter’s possible minimum and

maximum is the X-axis range in the four scatter graphs shown in Figures C.3, C.4, C.5, and

C.6

.
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Figure C.3: Sensitivity of Soil Lead Concentration on Avg BLL
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Note: Holding the average ingestion rate (55.8), soil-to-BLL conversion factor (.0000735),

and the soil share of exposure (0.5) constant. The X-axis range is arbitrarily chosen at 25%

higher and lower our preferred estimate.

Figure C.4: Sensitivity of Soil Ingestion Rate on Avg BLL
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Note: Holding the soil lead concentration (217mg/kg), the soil-to-BLL conversion factor

(0.0000735), and the and the soil share of exposure (0.5) constant. The X-axis range spans

1–10× of AALMv3 soil ingestion defaults, where 1x represents the soil ingestion in HICs,

and 10x matches Ericson et al. (2017).
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Figure C.5: Sensitivity of Soil-to-BLL Conversion Factor on Avg BLL
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Note: Holding the soil lead concentration (217mg/kg), the ingestion rate (55.8), and the soil

share of exposure (0.5) constant. X-axis range reflects the lowest and highest conversion

factors generated by AALMv3 across soil (0–2500mg/kg) and average ingestion

(18–170mg/day) inputs.

Figure C.6: Sensitivity of Soil Share of Exposure on Avg BLL
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Note: Holding the number of sites (35,000), the soil lead concentration (217mg/kg), and the

population exposed (330,000) constant. The x-axis range was arbitrarily chosen at 50%

above and below our preferred estimate.

In C.7 we show the sensitivity of the share of lead burden when changing
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the average blood lead level of the exposed population.

Figure C.7: Sensitivity of Avg BLL on Share
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Note: Holding the number of sites (35,000), the population exposed (330,000), and the

cumulative BLL from all sources (30,100,000,000) constant. The x-axis range was arbitrarily

chosen at 50% above and below our preferred estimate.

C.3 Average population

For our calculation of the population around each site we use a somewhat arbi-

trary ring of 165–5,000m. In Figure C.8 we show the simple mean across all sites

of population within each specific ring from 165–1,000m up to 165–10,000m.
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Figure C.8: Average population around polluted sites, by distance
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Note: This figure shows the mean population around sites polluted by lead battery recycling

in the Toxic Sites Identification Program (TSIP) database (Caravanos et al., 2014; Ericson

et al., 2013).

In C.9 we show the sensitivity of the share of lead burden when changing

the average exposed population.

Figure C.9: Sensitivity of Population Exposed on Share
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Note: Holding the number of sites (24,318), the Average BLL (1.7), and the cumulative BLL

from all sources (30,100,000,000) constant. X-axis range arbitrarily chosen at 50% higher

and lower our preferred estimate.
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C.4 Total Lead Exposure

Fuller et al. (2025) mention data limitations when introducing their cumulative

blood lead level country measure. We show the sensitivity of the share of lead

burden to the cumulative lead burden in LMICs in Figure C.10.

Figure C.10: Sensitivity of the Total cpBLL on Share
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Note: Holding the number of sites (24,318), the Average BLL (1.7), and the population

exposed (335,600) constant. Total LMIC cpBLL range is arbitrarily chosen at 25% higher

and lower the current estimate.
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D “Reduced-form” studies on recycling impacts

Here we discuss the new quasi-experimental studies in the economics literature.

These studies have used a larger radius around polluted sites in part due to

practical data constraints. They rely on existing survey or administrative data

that is not collected for the purpose of focusing on polluted sites, and so their

geographical overlap with polluted sites is limited. Using a larger distance

around sites increases the overlap with these data on outcomes. Despite this

limitation, results are quite consistent across various distances from 1,000 metres

to 10,000 metres (Figure D.1).

Tanaka et al. (2022) and Litzow et al. (2024) both use the same natural

experiment to examine impacts on child birth weight and school test scores,

respectively. They focus on the increase in battery recycling at existing plants

in Mexico that occurred after regulations raised environmental standards in the

United States. Both studies focus their main estimates on schools within 2 miles

(3.2 km) of a formal recycling facility. Tanaka et al. (2022)motivate this choice

by reference to data from the US that shows ambient lead levels that are similar

within 1 mile and between 1–2 miles, before falling after 2+ miles. They show

that US air quality regulation improved air quality within both a 1 and 2 mile

radius of a recycling plant (with a larger improvement within 1 mile). Litzow

et al. (2024) use a variety of distances as a robustness check, finding similar

effects when looking within each mile between 1 and 10 miles away.

Ipapa (2023) estimates effects of new recycling operations in Kenya. In his

main specification he finds negative effects for schools within 4 km of a recycling

plant, and only slightly smaller negative effects for schools within 6, 8, and

10 km.

Mahzab et al. (2024) find negative effects on terminated pregnancies within

a 5 km radius of recycling and smelting operations in Bangladesh. They vary

this distance to either 2 km or 10 km, in this case finding results that are smaller

and no longer statistically significant.

Berkhout et al. (2025) compare learning outcomes of children first exposed to

newly opened ULAB sites before age seven with those first exposed at age seven

or older, across distance bands. Relative to households 6–10 km away, early-life

exposure within 0–3 km lowers numeracy and Raven scores. At 3–6 km, effects

remain significant at about half the magnitude.
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Figure D.1: Quasi-experimental effects of lead at alternative distances

Note: This figure reproduces estimates from Ipapa (2024, Kenya), Berkhout et al (2025,
Indonesia), Litzow et al (2024, Mexico), and Mahzab et al (2024, Bangladesh). Estimates
are reduced-form effects of potential exposure to lead from used battery recycling sites on

test scores (in Kenya, Indonesia, and Mexico) and on child health (Bangladesh).
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Table D.1: Quasi-experimental “reduced-form” studies

Study Country
Treated
(km)

Comparison
(km)

Main
estimate

Standard
error

Outcome
Mean
National
BLL

Implied
BLL
Increase

Berkhout et al (2025) Indonesia 0-3 6-10 -0.48 0.15 Learning 3 -2.95
Berkhout et al (2025) Indonesia 3-6 6-10 -0.24 0.12 Learning 3 -2.59
Ipapa (2024) Kenya 0-4 10-20 -0.0503 0.016 Learning 3.2 -1.10
Ipapa (2024) Kenya 0-6 10-20 -0.0428 0.016 Learning 3.2 -0.96
Ipapa (2024) Kenya 0-8 10-20 -0.0253 0.016 Learning 3.2 -0.61
Ipapa (2024) Kenya 0-10 10-20 -0.0303 0.018 Learning 3.2 -0.71
Litzow et al (2024) Mexico 0-3.2 3.2+ -0.0772 0.0114 Learning 3.8 -1.80
Litzow et al (2024) Mexico 0-1 1+ -0.08 0.08 Learning 3.8 -1.85
Litzow et al (2024) Mexico 0-2 2+ -0.07 0.05 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-3 3+ -0.07 0.04 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-4 4+ -0.07 0.03 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-5 5+ -0.07 0.03 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-6 6+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-7 7+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-8 8+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-9 9+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-10 10+ -0.07 0.02 Learning 3.8 -1.68
Mahzab et al (2024) Bangladesh 0-5 5+ 0.0588 0.0219 Miscarriage
Mahzab et al (2024) Bangladesh 0-5 5-15 0.067 0.025 Miscarriage
Mahzab et al (2024) Bangladesh 0-2 2+ 0.038 0.033 Miscarriage
Mahzab et al (2024) Bangladesh 0-10 10+ 0.028 0.017 Miscarriage
Tanaka et al (2022) Mexico 0-3.2 3.2+ -38.5 16.3 Birthweight

Note: Data for mean national Blood Lead Level (BLL) is from the Institute for Health Metrics and Evaluation (IHME). The
implied log unit BLL change is calculated using the parameter for the lead-test scores relationship estimated by Crawfurd et al.
(2024) of 0.12 standard deviations per log unit change in blood lead.
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E Method for averaging exposures across a disk

For a circle of radius R:

ȳ(0, R) =
2

R2

∫ R

0

r ŷ(r) dr. (5)

where ȳ(0, R) is the area-average soil lead (mg/kg) inside radius R (metres);

ŷ(r) is the predicted soil lead at distance r. This is a standard polar-coordinate

mean value formula (e.g., (Stewart, 2016), Sec. 15.3).

We compute the inner-zone mean as ȳ(0, 165). The mean for the 165–5,000m

ring is then obtained from the two disk means:

ȳ(165, 5,000) =
5,0002 ȳ(0, 5,000)− 1652 ȳ(0, 165)

5,0002 − 1652
. (6)

where the numerator subtracts the total “lead mass” (area × mean) of the inner

disk from that of the larger disk, and the denominator is the ring area.
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