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Abstract

Oneinthree children worldwide have harmfully high lead exposure. Lead-acid batteries are

the main use of lead by weight, and many are recycled unsafely, but it is uncertain how much of
human exposure can be traced to this recycling. In this paper, we provide new modelled estimates
suggesting that around 33% of lead exposure in low- and lower-middle-income countries may come
from battery recycling, although there remains significant uncertainty. The vast majority of harm
comes from mass population low-level exposure, rather than localised hotspots. Previous studies
have typically focused on small populations with high exposure living within hundreds of metres of
polluted sites, but recent reduced-form quasi-experimental evidence demonstrates smaller negative
effects for people living within much wider areas, affecting many more people. Our simulation model
reconciles these approaches, and shows that expanding the area of concern around each recycling
site increases the estimated share of global lead exposure attributable to battery recycling by an
order of magnitude, from just 0.50% when considering only the high exposures within a few hundred

metres of a site.

WORKING PAPER 739 - JANUARY 2026




Beyond Hot Spots: Estimating Population Lead Exposure from Battery Recycling

Lee Crawfurd
Center for Global Development

James Hu
Coefficient Giving

Theodore Mitchell
Center for Global Development

Lee Crawfurd, James Hu, and Theodore Mitchell. 2025. “Beyond Hot Spots: Estimating Population Lead Exposure
from Battery Recycling” CGD Working Paper 739. Washington, DC: Center for Global Development. https://www.
cgdev.org/publication/estimating-population-lead-exposure-battery-recycling

We thank Bret Ericson, Jenna Forsyth, Richard Fuller, Jessica Fullerton, Thomas Ginn, Mikey Jarrell, Chris Kinally,
Nancy Lee, and Mauricio Romero for helpful comments, Alfonso Rodriguez for support accessing data, and
Coefficient Giving for funding in support for this work. The views are those of the authors and not necessarily
those of their institutions. Any errors are our own.

CENTER FOR GLOBAL DEVELOPMENT The Center for Global Development works to reduce global poverty and
2055 L Street, NW Fifth Floor improve lives Thrgugh mnovohve’economlc; reseorch that drives bgﬂer .
policy and practice by the world’s top decision makers. Use and dissemi-
Washington, DC 20036 nation of this Working Paper is encouraged; however, reproduced copies
may not be used for commercial purposes. Further usage is permitted

20280 o0Y under the terms of the Creative Commmons License.

1Abbey Gardens
U The views expressed in CGD Working Papers are those of the authors

Great College Street and should not be attributed to the board of directors, funders of the
lemelem Center for Global Development, or the authors’ respective organizations.

SW1P 3SE

www.cgdev.org

Center for Global Development. 2026.


https://www.cgdev.org/publication/estimating-population-lead-exposure-battery-recycling
https://www.cgdev.org/publication/estimating-population-lead-exposure-battery-recycling

1 Introduction

One in three children worldwide have high blood lead levels. One important
source of exposure is Used Lead-Acid Battery (ULAB) recycling. Around 86
percent of all lead by weight is used in these batteries (International Lead and
Zinc Study Group, 2023), and informal unsafe recycling is inefficient, losing up
to half of the lead content to the environment (Kinally et al., 2024). But the
amount of human exposure that can be traced to this trade remains uncertain.
Previous modelling suggests that only a small share of the total health burden
of lead exposure is attributable to battery recycling (Ericson et al., 2016). How-
ever new evidence questions a critical assumption built into that modelling. The
environmental literature suggests that pollution from recycling facilities is quite
localised, and based on this Ericson et al. (2016) model exposure within a 300
metre radius of each site. By contrast recent reduced-form quasi-experimental
studies have demonstrated negative causal effects of exposure to battery recy-
cling sites over much broader areas, of a radius around 5,000 metres.

In this paper we ask what happens to the share of lead exposure burden that
comes from battery recycling if we assume this activity exposes people over a
much wider area. Our hypothesis is that a smaller impact per person over a
much larger affected population could increase the overall share of the burden
attributable to battery recycling by several multiples.

Our approach leans heavily on prior modelling approaches (Ericson et al.,
2016; Kudymowa et al., 2025), but with new data and the critical new assump-
tion about the geographic extent of exposure from each site. First we provide
new estimates of the number of polluted sites due to battery recycling. Here we
add data on new emerging electric vehicles. Second we provide new estimates
of the geographic extent of lead exposure. The ideal dataset would have blood
lead measurements at a wide range of distances from both formal and informal
recyclers. The best available data is the Pure Earth Toxic Sites Identification
Program (TSIP) dataset, which covers a large number of polluted sites but only
has measures of soil lead. We convert this to blood lead using a standard bioki-
netic model, and also triangulate against other studies that do measure blood
lead (but only around formal recyclers), and against the implied blood lead
levels from quasi-experimental reduced-form studies on health and education
outcomes. Third, we use the latest version of the TSIP dataset to estimate the
average population at varying distances from polluted sites.

Overall we find consistent evidence that although exposure does fall steeply



with immediate distance to a site, low-level exposures do in fact extend to
a much wider radius around polluted sites. Environmental data is consistent
with lead concentration falling in an inverse proportional manner, with rapid
reductions in the immediate vicinity, but low-level exposure continuing over
much greater distances. This is consistent with quasi-experimental reduced-
form studies that estimate effects on educational and health outcomes (Berkhout
et al., 2025; Ipapa, 2023; Litzow et al., 2024; Mahzab et al., 2024; Tanaka et al.,
2022). At the extreme, lead has been shown to travel atmospherically over much
wider distances, for instance from historic Roman smelters to ice in Greenland
(Rosman et al., 1997) and across Western Europe (Schettler and Romer, 2006).

Armed with these new parameters on population exposure, we revisit the
Ericson et al (2016) model on the burden of lead exposure attributable to bat-
tery recycling. Expanding the affected population near ULAB sites from 300
metres to 5,000 metres can increase the share of all lead exposure attributable
to ULAB sites from around 0.5 to 33.28 percent. This compares to Ericson et
al 2016 who estimated around 15 percent of the burden of lead exposure in low-
and middle-income countries in 2013 could be attributed to battery recycling.!
Our estimate is close to a more recent localised and more heavily data-driven
estimate from Dhaka, Bangladesh, that 33 percent of lead exposure in that city
can be attributed to battery recycling Forsyth et al. (2026).

Our estimates come with substantial uncertainty in almost all key parame-
ters. We provide Monte Carlo simulations based on a beta-PERT distribution
which suggest wide confidence intervals, but for which the lower bound excludes
the central estimate of Ericson et al (2016).

Our estimates have important implications for policymakers interested in
tackling lead exposure in low- and lower-middle-income countries. Used-lead-
acid battery recycling shifts from being a marginal to a central contributor to
the overall burden. Further, the majority of the harm comes from low-level
exposure for large populations rather than high-exposure in small populations.

We discuss potential policy solutions in more detail in Section 4.

ISpecifically, they estimated that between 127,248 and 1,612,476 DALYs could be at-
tributed to battery recycling in 2013 for the 90 countries for which they had data. The total
lead burden from all sources in 2013 in the same 90 countries was estimated by the Global
Burden of Disease study at 3.2 to 8.6 million DALYs. Taking the mean of both numerator and
denominator gives a value of 14.7 percent. Taking the extremes of the two possible numerators
and denominators gives a range of between 0.01 percent and 50 percent.



2 Modelling Lead Burden

Our model seeks to estimate the share of lead exposure in low- and lower-middle-
income countries that can be attributed to battery recycling. We estimate this
as the total burden of lead exposure due to battery recycling, measured in
cumulative blood lead levels, as a share of total exposure from all sources (Fuller
et al., 2025). We base our approach on that developed by Ericson et al 2016.
We estimate the ULAB share for each country ¢ as the product of the number of
sites in each country contaminated by used lead-acid battery recycling (V;); the
level of lead-exposure around each polluted site (E[BLL per person]); and the
number of people exposed to contamination at each site (POP), all expressed as
a share of total cumulative population blood lead levels (¢cpBLL;). Cumulative
population blood lead levels are the simple product of total population and
mean blood lead levels (Fuller et al., 2025).
N; x E[BLL per person] x POP

ULAB share; — 1
share <pBLL, (1)

We discuss the data used for each of these parameters in turn.

2.1 The number of polluted sites (IN)

We follow Ericson et al. (2016) in using two alternative approaches to estimate
the number of sites polluted by lead-acid recycling in each country. The first is
based on the demand for lead-acid batteries implied by the quantity of vehicles
in each country. The second is based on extrapolating from a unique census of

polluted sites in Ghana.

Estimating polluted sites based on demand for lead

The first approach to estimating the number of polluted sites in a country is
based on demand from vehicles. The main limitation to this approach is the
requirement for data on vehicle usage. We start with the total number of vehicles
estimated to be in use in each country. We use data on road vehicles from the
International Road Federation and World Health Organization, on commercial
vehicles from the International Organization of Motor Vehicle Manufacturers
(OICA, 2024), and on motorbikes from a rental firm Riders Share (2023)2. We
follow the approach of Kudymowa et al. (2025) in expanding the vehicle set to

2Note the vehicle data from the World Bank includes both private and commercial vehicles,
so we subtract the OICA commercial vehicle data to get an estimate for private vehicles.



include electric three-wheelers, on which we obtain data from various sources
(see Tables A.2 and A.3).

We then estimate the volume of lead produced from each vehicle. For pas-
senger cars we assume that a car battery weighs 20 kg, of which 65% is lead,
and lasts for two years, leading to 6.5 kg of lead produced per year (Table A.2).
Using a similar approach each commercial vehicle is estimated to generate 32.5
kg of lead per year, each motorcycle 1.6 kg, each electric two-wheeler 26 kg, and
each electric three-wheeler 78 kg (this last value is particularly large as these
vehicles have four batteries). For electric two- and three-wheelers, we also as-
sume the proportion that run on lead-acid (as opposed to lithium-ion) batteries
for each country. From these inputs we calculate the total annual weight of lead
generated by vehicle use for recycling.

Overall vehicles account for around 75 percent of all lead-acid battery use,
with the rest coming from uses such as storage batteries for solar energy systems
(Bonnifield and Mallory, 2026; Fortune Business Insights, 2025). We extrapolate
from vehicle to total battery recycling assuming the share of lead generated by
each lead-acid battery application equals its market share.

We make the simplifying assumption of no cross-border trade in batteries.
2023 UN Comtrade data suggest low- and lower-middle income (LMIC) coun-
tries are net importers of ULABs (see Figure A.1), meaning this is a conservative
assumption for our estimation for the total share in LMICs. In this approach
we also ignore legacy abandoned recycling sites that may still be causing harm,
though these are accounted for in the second approach we discuss in the next
section.

We don'’t distinguish between formal and informal recycling for several rea-
sons. First there is evidence of harm from formal as well as informal recycling
(Tanaka et al., 2022). Many formal recyclers are unsafe, and there is likely more
of a gradient of harm than a binary distinction. Second, we only have limited
data (for just seven low- and lower-middle-income countries) on formal recycling
(estimated by the U.S. Geological Survey (2022)). For these countries formal
recycling accounts for a relatively small share of all estimated lead production.

To infer the number of recycling operations from national recycled-lead vol-
umes, we adapt the method introduced in Ericson et al. (2016). Their framework
converts total recycled lead into site counts by assuming a distribution of oper-
ation sizes (estimates that are based on expert consultations). Applying their
weights produces a single representative site throughput of around 375 t per

year, which we use as the basis for estimating the number of informal sites in



each country.

Estimating polluted sites based on population and economy

In addition to the vehicle-based approach in the previous section, Ericson et al.
(2016) also propose a second method that estimates the number of battery
recycling sites from a census of sites in Ghana (Dowling et al., 2016). Using the
site census data we can calculate how many recycling sites operate per capita in
Ghana, and extrapolate to other countries based on population size. The Ghana
study found between 31 and 112 contaminated sites for every million residents,
with 37% of these sites contaminated by lead. We start with the med-point of
these two estimates, or 71.5. We assume 37% of these are contaminated by lead,
and from the TSIP data we calculate that 52% of lead contaminated sites can
be attributed to used lead-acid battery recycling, leaving us with 14 sites per
million residents contaminated by lead from battery recycling.

For comparison two other more recent studies have attempted to exhaus-
tively map polluted battery recycling sites. Forsyth et al. (2026) do this for
Dhaka in Bangladesh. They identify 114 sites contaminated by lead in the city
(through battery recycling, manufacturing, disassembly and repair, and lead
ingot processing). Dhaka has a population of around 10 million people, so this
is around 11 sites per million people. Zimba et al. (2025) finds 92 sites in four
Malawian cities that have a combined population of around 2.5 million people,
so 37 sites per million.

We proceed with 14 sites per million people as a basis for extrapolation to
other countries. We follow Ericson et al 2016 in adjusting the initial estimate
of the number of sites for country-level indicators that correlate with unsafe
recycling. Specifically we compare each country to Ghana on (i) GDP (PPP)
per capita, (ii) the relative size of the informal economy, (iii) the rate of ur-
banization, and (iv) the relative size of the mining, manufacturing, and utilities
sector. Each variable is expressed relative to those of Ghana, such that Ghana’s
variables are all exactly 1. We then take a weighted average of these variables
to produce an overall multiplier, in which GDP per capita receives the largest
weight (0.75), followed by the informal economy size (0.1), urbanization rate
(0.075), and mining and manufacrturing sector (0.075). Data on population
is from the UN World Population Prospects, GDP per capita from the World
Bank, on informality from Elgin et al. (2021), on urbanization from UNDP, and

on manufacturing from the United Nations Statistics Division.



Comparing approaches

Using vehicle data we can produce estimates for 58 out of the 75 low- and
lower-middle-income countries. With the top-down approach we can produce
estimates for 74 countries. The correlation between the two estimates is 0.88
(see Figure A.1). For our main estimate we use the simple average of the two
methods.

Ultimately we estimate a total of around 24,318 polluted sites. By compari-
son Ericson et al estimated between 10,599 and 29,241 depending on approach.



2.2 Average lead exposure around each site

How much lead is the average person living near a battery recycling site exposed
to? Our main approach to estimating this is using data on soil lead levels at
varying distances from recycling sites, and then using a biokinetic model to

convert from soil to blood lead.

Data on soil lead from the Toxic Sites Identification Program

Direct measures of soil lead exposure around polluted sites are available from
the Toxic Sites Identification Program (TSIP) run by the NGO Pure Earth
(Caravanos et al., 2014; Ericson et al., 2013). This is a major global effort to
identify the most dangerous polluted sites around the world. We have little
understanding of the degree of representativeness of this dataset, as there is no
single standardized approach to identifying sites, as each country establishes
its own priorities and methods, but sources of information include requests
or concerns from local authorities or national government agencies, reports of
incidents or alerts from affected communities, findings from government agencies
or academic research, and news or media coverage. The database includes both
active and inactive legacy sites. We use the version of the database downloaded
in January 2025. This is an updated version of the same source used in previous
modelling efforts (Ericson et al., 2016). Prior efforts estimated the degree of
environmental contamination from polluted sites based on 28 assessments from
12 countries. From the full database of 1,672 sites we retain only battery-
recycling sites that have both soil lead measurements and GPS coordinates.?
Because measurements from nearby sites can overlap spatially and confound
distance-decay estimates, we further restrict the sample so that all included
sites are at least 10 km apart. After applying these filters we analyse 5,189
measures from 599 sites in 14 countries. Of these, 82 percent of measures are
within 165 metres of the centre of the polluted site. The mean lead measurement
within 165 metres is 13,162 parts per million (ppm), compared to 6,526 for those
outside 165 metres. 64 percent of measurements within 165 metres are above
the 200 ppm regulatory threshold, and 57 percent of measurements outside of
165 metres are above this threshold.

To isolate contamination attributable to battery-related activities, we sub-

3Specifically, we keep sites in which the ‘key pollutant’ variable is ‘lead’ and in which the
‘site industry’ description contains ‘Lead - Battery Recycling’, ‘Lead-acid battery manufac-
turing’, or ‘Lead Smelting’



tract a background soil lead level of 41.8 mg/kg, the median urban soil lead
across 32 Indian cities from a country-wide study (Adimalla, 2020). We choose
this value because India, Indonesia, and Bangladesh account for 32%, 25%, and
23% of the TSIP battery-site sample respectively and among these, India has
the only representative soil measurements in a recent systematic review of lead
in soil (Mishra et al., 2025). We then set non-positive values to a small positive
constant (1 x 107°) to preserve observations while enabling log transformations.

We follow Ericson et al. (2016), in using this data to predict lead levels
within various radii around sites. We first define a near ring as a radii of 165 m
(this is the weighted average of the three rings used by Ericson et al, at 100 m,
200m, and 300m). We then add a second concentric ring, from 165-5,000 m.
We use 5,000 m as the cut-off on the second ring for two reasons; first it is on the
lower end of the quasi-experimental literature effect bandwidths, and second as
our main fitted model of the TSIP data would reach 200 mg/kg (the US EPS
recommended residential soil lead screening level) at around 5,800 meters when
background lead is not subtracted. Our model asymptotes to background levels
of 42 mg/kg at 170,000 meters. We model other radii as sensitivity in Appendix
C.2.

Table 1: Data on distance to sites and environmental lead

Lead Log Lead
(1) 2 ®3) (4) (5) (6) (M) 8)
Distance (m) =22, THF* -0.0%**
(85) (0.0)
Inverse distance (m) 28504.7F** 2.3%H%
(4461.5) (0.2)
Log distance -7637.1%%%  _6275.8%* -0.6%FF 0. 5¥**
(1285.6) (2628.9) (0.0) (0.1)
Obs. 5,172 5,172 5,172 1,288 5,172 5,172 5,172 1,288
R? 0.20 0.21 0.22 0.20 0.63 0.64 0.66 0.64

Note: This table presents alternative specifications for estimating the relationship between
measured environmental lead and distance to a battery recycling site. The outcome in columns
(1)—(4) is soil lead parts-per-million (ppm), and the outcome in columns (5)—(8) the log of soil
lead (where values of zero are replaced by 0.00001). Columns (4) and (8) restrict observations
to those in which there is no other polluted site within 10,000 m. All models have site fixed
effects. * p<0.1, ** p<0.05, *** p<0.01

Ericson et al. (2016) estimate the average lead concentration in soil within

165m at 2,050 mg/kg. The updated TSIP database has extremely high lead
values that would skew the mean, and the data is not evenly distributed across
our radii categories. Therefore we choose to first fit a curve through the data
to predict expected lead levels. We estimate various models with different func-

tional forms, selecting the model with the best fit. The best fit is a log-log



specification, including site fixed effects (Table 1) i.e. a power law:

j(r) = exp(a) r’ (2)

where () is predicted soil lead (mg/kg) at distance r (metres) from the site
centre; « is the estimated intercept (with site fixed effects); and 5 is the slope in
the log—log regression. To translate from predicted values in logs back to levels
we use Duan’s smearing retransformation (Duan, 1983). Our average exposure
for each zone is the area-weighted mean over a disk (see Appendix E for more
detail).

From environmental to human exposure

To estimate the blood lead levels from soil lead exposure, we employ the All-
ages Lead Model (AALMv3), from U.S. EPA, which estimates BLLs based on
environmental exposures. One important adjustment is that we expect ingestion
rates to be higher in low- and middle-income countries than in the United States,
as children may be less likely to have improved flooring inside, and spend more
time outside with fewer solid surfaces. Ericson et al. (2016) multiplied the U.S.
EPA defaults by three for children and by four for adults to reflect this. They
cite evidence of greater hand-to-mouth behaviour in Native American tribes
(Harris and Harper, 2004) that predicted soil ingestion values to be around 400
mg/day for children and adults in rural LMICs as an upper bound of the US
EPA standards of the time. Since then, EPA defaults have been updated to
incorporate newer empirical data showing substantially lower age-specific soil
and dust ingestion in the US, about 60 percent of the original defaults (U.S.
Environmental Protection Agency, 2021).*

Because our goal is to represent LMIC exposures, we multiply the AALMv3
soil ingestion defaults by three. Recent field data indicate that even this tripling
is conservative: Yang et al. (2022) measured median soil ingestion of about 150
mg/day for children in an e-waste community in China, while Kwong et al.
(2021) reported geometric-mean intakes of roughly 160-230 mg/day for toddlers
in rural Bangladesh. Our threefold adjustment therefore errs on the side of
caution yet remains within the range of empirically observed LMIC exposures.

Our chosen ingestion rates are shown in Appendix A.5, along with a comparison

4These new estimates are in the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK)
model (U.S. Environmental Protection Agency, 2021). The All-Ages Lead Model (AALMv3)
also adopts these more recent, lower baseline ingestion rates.
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of previous default EPA rates and Ericson et al. (2016). We test sensitivity of
ingestion rates in Appendix C.2.

We assume that soil accounts for 50% of the exposure caused by a site, with
other known pathways such as water, air and food contamination combining to
cause the other half of exposure. This assumption comes from taking a midpoint
of limited heterogeneous evidence. Studies near lead-polluting sites report mixed
pathway shares: some find soil and dust ingestion to be the primary contributor
to lead exposure (Giubilato et al., 2025; Zhang et al., 2016), others observe
roughly equal contributions from soil and food (Qu et al., 2012), and some
identify food as the primary pathway (Gao et al., 2023; Cao et al., 2015). Given
this assumption, we double the AALMv3 lifetime BLL estimate to capture total

pathway exposure. We test sensitivity of this assumption in Appendix C.2.

Table 2: Population, Soil Lead, and Predicted Blood Lead by Distance from
Recycling Sites

Ericson et al. (2016) This study
Radii (m) Pop Soil (mg/kg) BLL (ng/dL) Pop Soil (mg/kg) BLL (pg/dL)
0-165 750 2,050 21-31 491 1,684 13.20
165-5000 - - - 335,600 206 1.7

Note: This table presents differences in key parameters between our study and Ericson et al. (2016).
For Ericson et al. (2016) BLLs are a geometric mean of 21.2pg/dL for adults and 31.15 pg/dL for chil-
dren. Soil is calculated by multiplying the soil concentration of their three modelled bands (850 mg/kg,
2500 mg/kg, and 5000 mg/kg) with their stated relative frequencies (0.5, 0.35, and 0.15 respectively).
We calculate their average population by multiplying the population of their three modelled site sizes
(200, 1000, 2000) with their stated relative frequencies (0.5, 0.35, and 0.15 respectively). Whilst Ericson
et al don’t express their results in terms of cumulative population blood lead levels (cpBLL), we can
approximate this by multiplying their mean population exposure of (6,094,463 + 16,814,100)/2 = 11
million by their mean blood lead levels of 26pg/dL (the simple mean of child and adult levels), so 11 x
26 = 286 million cpBLL.

Comparing to other data sources

There are two ways we can benchmark our estimates. First, we review studies
that do directly measure blood lead near polluted sites. Second, we calculate
the blood lead level implied by quasi-experimental reduced-form estimates on
test scores.

Forsyth et al. (2026) found that blood lead of children in Dhaka was 50%
higher for those living within 1 km, and 24% higher for those within 1-2 km, of
a battery recycling or lead industry site, compared to children living more than

5 km away. Differences beyond 2 km were not statistically significant, though
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this may reflect limited statistical power to detect smaller effects at greater
distances. Other studies of battery recycling sites have focused primarily on
populations living very close to emission sources, often within a few hundred
metres (Chowdhury et al., 2021; Etiang et al., 2018; Irawati et al., 2022; Lu-
mumba et al., 2024), and therefore provide limited information about impacts
at larger distances. Chowdhury et al. (2021) find median soil concentrations
of 1400 mg/kg and median blood lead levels of 21.3 pg/dL within 200 m of an
abandoned informal used lead acid battery recycling site in Bangladesh. Irawati
et al. (2022) find average blood lead levels in a village in Indonesia with ULAB
recycling of 17 pg/dL. Every sample taken in one study in the heavily polluted
village of Dong Mai in Vietnam was above 10 pg/dL (Daniell et al., 2015).
Machmud et al. (2025) found that 61% of children living within 200 m of a re-
cycling site in Indonesia had BLLs above 10 pg/dL, compared with 31% among
those 200-250 m away. Similarly, Zhang et al. (2016) observed a decrease from
15 to 7 pg/dL between 250 m and 1 km in China. These studies demonstrate
steep exposure gradients near battery recycling operations but provide little
evidence regarding effects beyond approximately 1-2 km.

Several studies estimate the relationship between blood lead and distance to
other types of lead industry such as mines and large formal smelters (Garcia-
Vargas et al., 2014; Hegde et al., 2010; Paoliello et al., 2002; Willmore et al.,
2006; Mandié-Rajcevié¢ et al., 2018). Paoliello et al. (2002) for example find
blood lead within 2km of a refinery in Brazil is 11.25 pg/dL, and 4.4 pg/dL in
surrounding urban areas within 50 km.

We can also compare to the blood lead levels implied by observed test score
impacts in reduced-form studies. These studies measured effects at distances of
2-10km away. Here we use the estimated relationship between test scores (T')
and blood lead (B) from Crawfurd et al. (2024), who find a meta-analytic effect

(B) of 0.12 standard deviations per log unit increase in blood lead level.
T=a+pfInB, p=-012 (3)

Combined with estimates of mean blood lead level (BLL) from IHME, we
can calculate the implied change in blood lead (ABLL) associated with the
estimated test score impacts from the quasi-experimental reduced-form studies
(AT), as follows:

ABLL = BLL (exp(AT/B) — 1). (4)

12



This works out as around 3 pg/dL for Berkhout et al. (2025), 0.6-1.1 pg/dL
for Ipapa (2023), and 1.7-1.9pg/dL for Litzow et al. (2024) (Table D.1), all
close to our main estimate of 1.7 pg/dL.
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2.3 Estimating population around each site (POP)

To estimate the number of people living in proximity to lead-acid battery re-
cycling sites, we overlay observed site coordinates from the TSIP database on
high-resolution gridded population data (CIESIN, 2018). For each site we con-
struct concentric buffer zones at varying radii and sum the resident population
within each zone. As we are missing data on the location of most sites, we esti-
mate here the average population around each site and multiply this figure by
the estimated number of sites in each country. One complication is that buffers
around nearby sites overlap. We assume that exposures are additive, which
aligns with our main outcome being cumulative population blood lead levels.
Additivity can be assumed because the relationship between soil lead concen-
tration and blood lead level is approximately linear over the relevant range of
soil concentrations-up to ten times our study average (Appendix A.2).

But we are also interested in the number of unique people affected by battery
recycling operations. In order to count the number of unique people we can
construct the union of sites and count population within this. But this is further
complicated because our dataset includes only a fraction of all existing sites in
each country, requiring us to adjust for both observed and unobserved overlap.
For the inner ring of 165 m there is minimal overlap between sites as these
rings are sufficiently small. For the outer-most ring of 165-5000 m there is
substantial overlap between the rings around different sites. To extrapolate
population exposure beyond the observed sites, we need to estimate the location
of the unobserved sites. We use an inhomogeneous Poisson point process with
intensity proportional to local population. For each country, we (i) build a
study domain around the observed points (convex hull + buffer, clipped to
the national boundary); (ii) convert gridded population density to people-per-
cell; (iii) keep the observed sites fixed; and (iv) simulate additional sites up to
the country’s estimated total number, by sampling grid cells with probability
proportional to population. For each simulation we rasterize the 165-5000 m
ring around all (observed + simulated) sites onto the population grid and sum
unique population in the ring. Repeating this Monte Carlo step yields the
expected unique population covered in the wide ring. This estimator reflects
urban concentration better than a homogeneous Poisson rarefaction and avoids
the downward bias from treating observed clusters as a random sample. Key
assumptions are that population is a reasonable proxy for site intensity and that

the domain captures where unobserved sites can plausibly occur.
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3 Results

As there are a large number of assumptions and uncertainty that go into our
model, we assess the impact of this parameter uncertainty using a Monte Carlo
approach with a Beta-PERT distribution. This approach is widely used in cost-
benefit and risk analysis, and provides a representation of uncertainty based on
intuitive subjective inputs: the minimum, most likely, and maximum values of
each parameter. We sample values for each parameter independently.

Here we present sensitivity to adjustments in our four main parameters.
In the numerator, cumulative population blood lead levels (cpBLL) are the
product of the number of sites, average blood lead increases due to each site,
and the number of people affected by each site. The denominator is the cpBLL
attributable to all sources.

First, for the number of sites, we use the global total across the 75 low
and lower-middle income countries for which we have estimates, which is 24,318
sites. We show sensitivity to increasing or decreasing this amount by 50%.

Second, for blood lead levels, our baseline estimate uses an average exposure
level within 5km of 1.7ng/dL. Here we again present scenarios increasing or
decreasing this amount by 50%.

Third, our baseline population estimate is that 335,600 people live within 5
kilometres of the average site. One point of comparison here is Forsyth et al.
(2026) who find that 5 million people live within 2km of the 71 sites in Dhaka,
or 70,000 per site (assuming no overlap). We again present estimates varying
this by +50%.

Fourth, for the total cpBLL attributable to all sources we use the total
for low- and lower-middle income countries from the IHME Global Burden of
Disease (GBD) Study (GBD, 2025). This is a slight update to the GBD 2021
numbers used by Fuller et al. (2025). There is substantial structural uncertainty
here given sparse underlying data from LMICs, so we again vary this amount
by £50% relative to the central estimate.

Figure 1 shows the distribution of estimates of the share of lead exposure
attributable to lead-acid battery recycling. Whilst there is substantial uncer-
tainty, the lower bound of the 95 percent confidence interval around our central
estimate is above the earlier estimates from Ericson et al. (2016) The modal
estimate is around 33.28 percent of the burden. 80 percent of our estimates fall
within 2671 percent of the burden.
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Figure 1: Estimated share of lead exposure attributable to used lead-acid bat-
tery (ULAB) recycling
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Note: This figure presents the distribution of estimates across 50,000 simulations with
varying independent draws for each of the four key parameters. Vertical dashed lines

indicate the 95% confidence interval.

In Table 3 we show the breakdown of our central estimates by world region.
We show the total estimated number of sites, unique number of exposed people,
total cumulative population blood lead levels (cpBLL) attributable to ULABs
for the inner close ring (0-165 m), and the wider ring (0-5000 m), and the total
estimated cpBLL from all sources. Overall we see an increase by two orders of
magnitude in estimated lead exposure from battery recycling by widening the
radius of exposure, from 0.50 % to 33 % . The region with the largest exposure
from battery recycling is sub-Saharan Africa, with over 3 billion ¢cpBLLs, ac-
counting for over half of all lead exposure in the region. The share of the burden
is also over half for South Asia, and for other regions is between a quarter and
a third.
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Table 3: Main results

Region Sites  Exposed People (Unique) cpBLL (Million, additive) Shares (%)
0-165m 165-5000m 0-165m  0-5000m  All Sources 0-165m  0-5000m

Central Asia 341 159,513 5,589,208 2.2 97.1 274.9 0.8 35.3
Fast Asia and Pacific 3,174 1,485,781 71,887,207 20.6 1,239.7 1,974.6 1.0 62.8
Latin America and Caribbean 318 148,920 7,096,333 2.1 122.4 370.6 0.6 33.0
Middle East and North Africa 2,414 1,129,890 55,652,101 15.7 959.3 3,283.3 0.5 29.2
South Asia 10,294 4,818,257 306,102,983 66.8 5,253.1 16,565.7 0.4 31.7
Sub-Saharan Africa 7,077 3,639,930 158,021,988 50.5 2,731.3 8,785.9 0.6 31.1
Total 24,318 11,382,292 604,349,820 157.8  10,402.9 31,255.0 0.5 33.3

LT

Note: This table presents estimates by region of the number of polluted sites, total unique exposed people within two rings, cumulative
population blood lead levels, and the estimate share of all blood lead levels attributable to used lead-acid battery recycling (ULAB) sites.

Shares use the denominator of cpBLL from all sources shown in column (6). Estimates reflect only LMIC countries within each region.
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Table 4: Main Inputs Comparison

Ericson et al. (2016) Ericson et al. (2016)  This study This study

(0-165 m) (0-165 m) (0-165 m) (165-5000 m)
(lower estimate) (higher estimate)
Number of sites 10,599 29,241 24,318 24,318
Average BLL per site 21 21 13.2 1.7
Population exposed per site 750 750 491 335,600
Cumulative BLL 166,934,250 460,545,750 157,761,710  10,487,724,403
% share of lead poisoning” 0.53 1.53 0.5 33.28

*Shares are calculated using a denominator cpBLL of 30,100,000,000.



In Table 4 we show the comparison of our inputs to the main equation with
those of Ericson et al. (2016).

We can also express the total number of 10 billion cumulative popula-
tion blood lead levels from battery recycling in terms of health and educa-
tion impacts. The IHME estimate that 19 million disability-adjusted life years
(DALYS) are attributable to lead exposure in low- and lower-middle income
countries. A 33.28 percent share of this is equal to 8 million DALYs. Larsen
and Sanchez-Triana (2023) estimate 2.4 million annual deaths from cardiovas-
cular disease and 543 million IQ points lost due to lead exposure in low- and
lower-middle-income countries. A 33.28 percent share of this due to battery
recycling is equal to 807,471 annual deaths, and 181 million IQ points lost, or
millions of learning-adjusted years of school (Angrist et al., 2025).
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4 Policy solutions

These new estimates of the share of the burden of lead exposure attributable to
ULAB recycling implies a higher priority for policy efforts to tackle this source of
exposure vis-a-vis other common sources. The challenge with battery recycling
is that unlike with many consumer products in which bans and enforcement
are the obvious policy routes, battery recycling is highly economically valuable.
Specific remediation efforts have been shown to be feasible at cleaning up the
most contaminated sites (Chowdhury et al., 2021; Ericson et al., 2018), but the

much broader spread of small effects imply a different set of solutions.

4.1 National action

The main priority for action is by national governments. Brazil has been hailed
as one potential role model on action to address unsafe lead-acid battery recy-
cling. Through a series of reforms implemented between 2008 and 2019 Brazil
transitioned from an unsafe informal industry to a formal and safer one. The
heart of this was a mandate for firms to buy-back or collect and recycle sold
batteries. This was accompanied by eliminating taxes to make the formal sector
more competitive with the informal sector (for more detail see Smith (2024)).
The tax reduction seems to have been important, as a buy-back policy in India
without the tax reduction did not seem to be effective (Pawar, 2025). More ev-
idence is needed on the effectiveness of other ‘extended producer responsibility’
schemes. Further investigation of other models may also be needed in smaller
countries that don’t have domestic battery production. In many countries reg-
ulation already exists on safe recycling practices, and so increased enforcement
against unsafe industry could play a useful role. Kundu et al. (2025) show in-
formation asymmetries in the market for batteries that policy could usefully

address.

4.2 International action

International buyers of lead can potentially play a complementary role. Mil-
lions of dollars of lead are purchased annually by firms in the United States
from West Africa. Improved due diligence rules could require larger buyers to
map out supply chains, including auditing smelters and only purchasing from
suppliers that meet existing international guidelines (such as the United Nations

Basel convention). International actors might also provide technical assistance
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to governments on better regulation, or directly to large formal recyclers to
encourage safer practices.

Beyond the battery recycling industry, improved public health monitoring,
including critically more blood lead testing, can empower individuals to avoid

lead exposure and demand safer practices.
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5 Conclusion

In this paper we revisit previous estimates of the burden of lead exposure in low
and lower-middle-income countries that is attributable to used lead-acid battery
recycling. Updating prior modelling with new data on the extent of dispersion
of lead suggests that the contribution of battery recycling could be significantly
higher than previously thought. Though our central estimate is around a third
of all exposure, we are unable to provide a very precise estimate due to the
number of uncertain factors. Nonetheless evidence increasingly suggests that
used lead-acid battery recycling affects massive numbers of people.

Our estimates have several limitations. Many of the key parameters are
unknown. We don’t know exactly how many battery recycling sites there are,
how many people are exposed to lead at each site and by how much.

Future research would be valuable in improving our certainty, by providing
new data on several of the parameters in this model. Our estimate of the number
of polluted sites in many countries is based in part on just one exhaustive census
(Dowling et al., 2016). More similar studies would allow us to increase our
confidence in those estimates, as would better data on demand for lead from
vehicles.

Our estimate of the average lead burden from recycling sites comes primarily
from the Toxic Site Identification Program (TSIP), which includes data from
just 13 countries. This database may be biased towards more visible and there-
fore larger polluting sites. The method for collecting soil may bias towards
finding samples with higher lead concentrations—the TSIP Investigator Hand-
book (Pure Earth, 2017) mentions targeting “sampling at suspected ‘hotspots’
such as residential areas adjacent to a contamination source”. Data on the loca-
tion of more sites would also increase our confidence in the average population
exposed to sites. We also rely on very uncertain estimates of the background
level of soil lead in developing countries, based on just one study, and on the
level of ingestion of soil in developing countries, based on just two studies.

Our model relies on soil lead data, converted to blood lead via the All-Ages
Lead Model (AALM) biokinetic model. We assume soil ingestion accounts for
roughly half of the total exposure from a site. The relative contribution of each
exposure pathway remains understudied.

Future research should also look further at other avenues to address the lead
source apportionment question, such as isotopic fingerprinting, combining natu-

ral experiments with direct lead measurement (such as bone lead which provides
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estimates of cumulative exposure), and randomized remediation interventions.

Above all more evidence is needed on what policies and actions are most
effective and cost-effective in improving the safety of lead battery recycling, and
reducing lead exposure.

What is clear is that battery recycling is a significantly larger problem than
previously thought. This has implications for actors focused on reducing lead
exposure, who might want to update at the margin and reallocate some part
of their portfolio towards developing solutions for battery recycling, despite the

remaining uncertainty in the overall share of the burden.
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A Additional Tables and Figures

A.1 Tables

Table A.1: Trade Balance of ULAB-Related Products for LIC/LMICs

Product Exports to Exports to Imports to  Net Imp.
LIC/LMICs UMIC/HICs UMIC/HICs

Waste batteries
(HS 854810)

Lead waste & scrap
(HS 780200)

Note: Net imports = imports from UMIC/HICs minus total exports. Positive values
indicate LIC/LMICs are net importers. The data is from 2023 UN Comtrade (Smith, 2025).

147,738.1 11,639.9 275,936.4 116,558.4

18,583.5 9,327.2 128,033.2 100,122.5

Table A.2: Lead generated per vehicle

Vehicle type Battery Batteries Service Lead  Source
weight per life per
(kg) vehi- (years) year
cle (kg)
Passenger car 20 1 2 6.5 Tiir et al. (2016)
Commercial vehicle 50 2 2 32.5  Tir et al. (2016)
Motorcycle 5 1 2 1.6 Two Tyres (2024)
Electric two-wheeler 40 1 1 26 Tran et al. (2023)
Electric three-wheeler 30 4 1 78 Table A.3

Note: We assume for all vehicle types that the lead content by weight of each battery is 65
percent. Our estimate of battery life for electric three-wheelers is supported by recent
research from Bangladesh (Kundu et al., 2025).
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Table A.3: Data sources for electric three-wheeler battery weight

Source

Weight per battery

https://www.zunaxenergy.in/electric-
rickshaw-batteries.html
https://www.thesupermexx.com/product/
intelligent-e-rickshaw-battery/

http://www.getekbatteries.com/heavy-e-
rickshaw-battery-3552243.html
https://www.ujalapowers.com/ups-12000-
electric-rickshaw-batteries-1954218.html
https://www.tradeindia.com/products,/80-
ah-acid-lead-e-rickshaw-battery-with-9-5-kg-
weight-8256648.html
https://www.indiamart.com/proddetail /
140ah-e-rickshaw-battery-16258649291.html
https://www.ujalapowers.com/er-13000-
electric-rickshaw-batteries-6884489.html

25-30 kg

25.6 kg (46.5 kg for a whole
pack at 40-50% of weight of
lead-acid equivalent, mean-
ing 103 kg for 4 lead-acid
batteries)

10-25 kg

38 kg

9.5 kg

33.3 ke

31 kg

Table A.4: Distance-Decay Function by Country

(1) (2) ®3) 4)

Bangladesh ~ Georgia India Indonesia

(5) (6) (7)
Other All All

Indist  -0.879%%%  _1.144%  -0.466%*F  -0.606%**
(0.0520)  (0.587)  (0.0691)  (0.162)

0.121%F L0377 _0.614%%
(0.00534)  (0.0985)  (0.0495)

Obs. 1,493 308 1,382 1,329
R? 0.60 0.36 0.71 0.59

59 601 5,172
0.16 0.61 0.66

Note: This table presents estimates of the relationship between log distance and log soil
lead by country. We pool together countries with fewer than 100 data points each (these
are Brazil, Colombia, Ghana, Kenya, Kyrgyzstan, Madagascar, Mongolia, Philippines, and
Senegal). Alternative specifications for the full sample are shown in Table 1. All models have
site fixed effects and standard errors clustered by sites.

* p<0.1, ** p<0.05, *** p<0.01
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Table A.5: Comparison of Soil Ingestion Assumptions: Ericson et al. (2016) vs.
This Study

Ericson et al. (2016) This Study
Age group Default LMIC Adjusted Default LMIC Adjusted
From 0 years 38.75 255 — —
From 1 year 60.75 405 — —
From 2 years 60.75 405 — —
From 3 years 60.75 405 — —
From 4 years 45.00 300 — —
From 5 years 40.50 270 — —
From 6 years 38.25 255 — —
Adults (174) 50 200 — —
From 0 years — — 18 54
From 0.25 years — — 32 96
From 1 year — — 41 123
From 5 years — — 36 108
From 10 years — — 27 81
From 15 years — — 14 42

Notes: Ingestion units are mg/day. Default refers to the default soil ingestion values in the
model used. Ericson et al. (2016) used the IEUBK version 1 for children aged 0-7 and ALM
version 1 for adults aged 17-64. Our study used the AALMv3 for all ages (0-64). Ericson
et al. (2016) state that the IEUBK average soil ingestion is 85-135 mg/day, but this is in

fact referring to a combined ingestion of soil and dust.
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A.2 Figures

Figure A.1: Comparison between alternative methods for estimating number of

polluted sites per country

Top-down (Ghana extrapolation)
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Note: This figure shows the log number of sites estimated for each of the 57 countries for
which we have data by two alternative approaches, a top-down approach on the y-axis and a
bottom-up approach on the x-axis. The correlation between raw numbers is 0.88. The yellow

line is the line of equality.

35



Figure A.2: Soil lead and distance to polluted sites in the Pure Earth global
database

Soil lead (ppm)
200,000 |

150,000 |
100,000 * . e

50,000 -|

T T T
1 10 100 165 1000 5000
Distance to ULAB site (m)

Note: This figure plots data from the Toxic Sites Identification Programme downloaded in
January 2025.

Figure A.3: Soil lead and Blood lead relationship in AALMv3

Average Blood Lead Level (ug/dL)
8

L]
° Chosen Soil Lead Concentration (mg/kg)

0 500 1000 1500 2000
Average Soil Lead Concentration Around a Site (mg/kg)

Note: This figure shows the AALMv3 output of average lifetime (ages 0-64) blood lead from
soil lead input values up to 10 times the average soil used our the model. The linear
relationship observed here is our justification for assuming additivity of exposure from

multiple sites.
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B Model Specification and Simplifying Assump-

tions

We make a number of adjustments and simplifying assumptions to the model
developed by Ericson et al. (2016), which we list here.

B.1 Number of sites

In estimating the number of polluted sites based on vehicle demand, we add a
common new vehicle type to those considered by Ericson et al. (2016)—electric
three-wheelers. They estimate a total number of estimated sites at 10,599 from
the vehicle demand method and 29,241 from the Ghana census-extrapolation
method. We estimate a total of 57,774 (Table 3).

We model a single recycling site size rather than three different sizes. Ericson
modelled three sizes of sites (outer exposure distance of 100m, 200m, 300m) with
frequency ratios of 0.5, 0.35, 0.15 respectively. We modelled the average of this

to be 165 m. This does not change the main results of the model.

B.2 Average exposure

We enter soil lead concentrations directly into the AALMv3 and use the model’s
single 0-64-year population average without applying any demographic weight-
ing. For example, a soil lead level of 500 mg/kg gives an AALMv3 output of
0.684 pg/dL as the average blood-lead level across ages 0-64, and we assign
that value to everyone in our exposure model. Because the AALMv3 already
incorporates age-specific physiology before producing this mean, our approach
captures children’s higher biological uptake within the 0-64 average itself. How-
ever, it does not adjust for the younger age structure of low- and middle- in-
come countries. By contrast, following Ericson et al. (2016) by splitting ages
and using a soil lead level of 500 mg/kg would give AALMv3 age-group means
of 2.0ng/dL (0-6 years), 0.86 pg/dL (7-16 years), and 0.87 pg/dL (17+ years),
then weighting them by typical LMIC demographics, 15 percent aged 0-6, 25
percent aged 7-16, and 60 percent aged 17+, would yield a weighted average
of about 0.77ng/dL. Our simpler method therefore underestimates the LMIC
population-wide average by roughly 10%.
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C Robustness

We make a number of adjustments and simplifying assumptions to the model
developed by Ericson et al. (2016), which we list here.

C.1 Number of sites

In Figure C.1 we show the responsiveness of the estimated share of lead burden
to changes in the estimated number of polluted sites, holding other parameters

constant.

Figure C.1: Battery-recycling share of lead burden and number of polluted sites
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Note: Holding the Average BLL (1.7) and the population exposed (335,600) constant. The

x-axis range shows 50% above and below our preferred estimate.

C.2 Average exposure

Our average blood lead level input is generated using the AALMv3 model, which
converts soil lead concentrations to average BLLs for ages 0-64. At the soil levels
we model (0-2500mg/kg), the AALM output scales linearly with soil ingestion

rate, allowing us to express average BLL from soil as a product of three terms:

Avg BLL Avg Soil Lead x Avg Soil Ingestion Rate x Conversion Factor.

soil —
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And we can express the BLL from all sources as:
Avg BLL,;; = Avg BLL_; x Soil Share of All Exposure Pathways.

We conduct sensitivity analyses on each of these four underlying components,
first using a probabilistic Monte Carlo method drawing each parameter from a
distribution (as in Section 3). We then show how blood lead levels respond to
each individual parameter whilst holding the others constant in a deterministic
model. Figure C.2 shows the Monte Carlo results, Figure C.3 varies soil lead
concentration, Figure C.4 varies soil ingestion rate, Figure C.5 varies the soil-
to-BLL conversion factor, and Figure C.6 varies the share of total exposure

attributed to soil ingestion.

Figure C.2: Estimated effect on blood lead levels within 5km of a polluted site

Density
N
|

0 2 4 6 8 10
Avg BLL per person per site (incl. pathway ratio)

Note: This figure presents the distribution of estimates of blood lead levels across 50,000
simulations with varying independent draws for each of four underlying model parameters;
(i) the soil lead level, (ii) the soil ingestion rate, (iii) the soil to blood lead conversion rate,
and (iv) the soil share of all exposure pathways. Each parameter’s possible minimum and
maximum is the X-axis range in the four scatter graphs shown in Figures C.3, C.4, C.5, and

C.6

39



Figure C.3: Sensitivity of Soil Lead Concentration on Avg BLL

Average Blood Lead Level (yg/dL)
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Note: Holding the average ingestion rate (55.8), soil-to-BLL conversion factor (.0000735),
and the soil share of exposure (0.5) constant. The X-axis range is arbitrarily chosen at 25%

higher and lower our preferred estimate.

Figure C.4: Sensitivity of Soil Ingestion Rate on Avg BLL

Average Blood Lead Level (ug/dL)
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Note: Holding the soil lead concentration (217mg/kg), the soil-to-BLL conversion factor
(0.0000735), and the and the soil share of exposure (0.5) constant. The X-axis range spans
1-10x of AALMv3 soil ingestion defaults, where 1x represents the soil ingestion in HICs,
and 10x matches Ericson et al. (2017).

40



Figure C.5: Sensitivity of Soil-to-BLL Conversion Factor on Avg BLL

Average Blood Lead Level (yg/dL)
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Note: Holding the soil lead concentration (217 mg/kg), the ingestion rate (55.8), and the soil
share of exposure (0.5) constant. X-axis range reflects the lowest and highest conversion
factors generated by AALMv3 across soil (0-2500 mg/kg) and average ingestion
(18-170 mg/day) inputs.

Figure C.6: Sensitivity of Soil Share of Exposure on Avg BLL
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Note: Holding the number of sites (35,000), the soil lead concentration (217 mg/kg), and the
population exposed (330,000) constant. The x-axis range was arbitrarily chosen at 50%

above and below our preferred estimate.

In C.7 we show the sensitivity of the share of lead burden when changing
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the average blood lead level of the exposed population.

Figure C.7: Sensitivity of Avg BLL on Share
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Note: Holding the number of sites (35,000), the population exposed (330,000), and the
cumulative BLL from all sources (30,100,000,000) constant. The x-axis range was arbitrarily

chosen at 50% above and below our preferred estimate.

C.3 Average population

For our calculation of the population around each site we use a somewhat arbi-
trary ring of 165-5,000 m. In Figure C.8 we show the simple mean across all sites

of population within each specific ring from 165-1,000 m up to 165—10,000 m.
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Figure C.8: Average population around polluted sites, by distance
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Note: This figure shows the mean population around sites polluted by lead battery recycling
in the Toxic Sites Identification Program (TSIP) database (Caravanos et al., 2014; Ericson
et al., 2013).

In C.9 we show the sensitivity of the share of lead burden when changing

the average exposed population.

Figure C.9: Sensitivity of Population Exposed on Share
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Note: Holding the number of sites (24,318), the Average BLL (1.7), and the cumulative BLL

from all sources (30,100,000,000) constant. X-axis range arbitrarily chosen at 50% higher

and lower our preferred estimate.
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C.4 Total Lead Exposure

Fuller et al. (2025) mention data limitations when introducing their cumulative
blood lead level country measure. We show the sensitivity of the share of lead
burden to the cumulative lead burden in LMICs in Figure C.10.

Figure C.10: Sensitivity of the Total cpBLL on Share
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Note: Holding the number of sites (24,318), the Average BLL (1.7), and the population

exposed (335,600) constant. Total LMIC cpBLL range is arbitrarily chosen at 25% higher

and lower the current estimate.
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D “Reduced-form” studies on recycling impacts

Here we discuss the new quasi-experimental studies in the economics literature.
These studies have used a larger radius around polluted sites in part due to
practical data constraints. They rely on existing survey or administrative data
that is not collected for the purpose of focusing on polluted sites, and so their
geographical overlap with polluted sites is limited. Using a larger distance
around sites increases the overlap with these data on outcomes. Despite this
limitation, results are quite consistent across various distances from 1,000 metres
to 10,000 metres (Figure D.1).

Tanaka et al. (2022) and Litzow et al. (2024) both use the same natural
experiment to examine impacts on child birth weight and school test scores,
respectively. They focus on the increase in battery recycling at existing plants
in Mexico that occurred after regulations raised environmental standards in the
United States. Both studies focus their main estimates on schools within 2 miles
(3.2km) of a formal recycling facility. Tanaka et al. (2022)motivate this choice
by reference to data from the US that shows ambient lead levels that are similar
within 1 mile and between 1-2 miles, before falling after 2+ miles. They show
that US air quality regulation improved air quality within both a 1 and 2 mile
radius of a recycling plant (with a larger improvement within 1 mile). Litzow
et al. (2024) use a variety of distances as a robustness check, finding similar
effects when looking within each mile between 1 and 10 miles away.

Ipapa (2023) estimates effects of new recycling operations in Kenya. In his
main specification he finds negative effects for schools within 4 km of a recycling
plant, and only slightly smaller negative effects for schools within 6, 8, and
10 km.

Mahzab et al. (2024) find negative effects on terminated pregnancies within
a bkm radius of recycling and smelting operations in Bangladesh. They vary
this distance to either 2 km or 10 km, in this case finding results that are smaller
and no longer statistically significant.

Berkhout et al. (2025) compare learning outcomes of children first exposed to
newly opened ULAB sites before age seven with those first exposed at age seven
or older, across distance bands. Relative to households 6-10 km away, early-life
exposure within 0-3 km lowers numeracy and Raven scores. At 3-6 km, effects

remain significant at about half the magnitude.

45



Figure D.1: Quasi-experimental effects of lead at alternative distances
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Note: This figure reproduces estimates from Ipapa (2024, Kenya), Berkhout et al (2025,

Indonesia), Litzow et al (2024, Mexico), and Mahzab et al (2024, Bangladesh). Estimates

are reduced-form effects of potential exposure to lead from used battery recycling sites on
test scores (in Kenya, Indonesia, and Mexico) and on child health (Bangladesh).
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Table D.1: Quasi-experimental “reduced-form” studies

. . Mean Implied
Study Country Treated ~ Comparison Maln Standard Outcome National BLL
(km) (km) estimate error BLL I
ncrease

Berkhout et al (2025) Indonesia 0-3 6-10 -0.48 0.15 Learning 3 -2.95
Berkhout et al (2025) Indonesia 3-6 6-10 -0.24 0.12 Learning 3 -2.59
Ipapa (2024) Kenya 0-4 10-20 -0.0503 0.016 Learning 3.2 -1.10
Ipapa (2024) Kenya 0-6 10-20 -0.0428 0.016 Learning 3.2 -0.96
Ipapa (2024) Kenya 0-8 10-20 -0.0253 0.016 Learning 3.2 -0.61
Ipapa (2024) Kenya 0-10 10-20 -0.0303 0.018 Learning 3.2 -0.71
Litzow et al (2024) Mexico 0-3.2 3.2+ -0.0772 0.0114 Learning 3.8 -1.80
Litzow et al (2024) Mexico 0-1 1+ -0.08 0.08 Learning 3.8 -1.85
Litzow et al (2024) Mexico 0-2 2+ -0.07 0.05 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-3 3+ -0.07 0.04 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-4 4+ -0.07 0.03 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-5 5+ -0.07 0.03 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-6 6+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-7 T+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-8 8+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-9 9+ -0.07 0.02 Learning 3.8 -1.68
Litzow et al (2024) Mexico 0-10 10+ -0.07 0.02 Learning 3.8 -1.68
Mahzab et al (2024)  Bangladesh 0-5 5+ 0.0588 0.0219 Miscarriage

Mahzab et al (2024)  Bangladesh 0-5 5-15 0.067 0.025 Miscarriage

Mahzab et al (2024)  Bangladesh 0-2 2+ 0.038 0.033 Miscarriage

Mahzab et al (2024)  Bangladesh 0-10 10+ 0.028 0.017 Miscarriage

Tanaka et al (2022) Mexico 0-3.2 3.2+ -38.5 16.3 Birthweight

Note: Data for mean national Blood Lead Level (BLL) is from the Institute for Health Metrics and Evaluation (IHME). The
implied log unit BLL change is calculated using the parameter for the lead-test scores relationship estimated by Crawfurd et al.
(2024) of 0.12 standard deviations per log unit change in blood lead.



E Method for averaging exposures across a disk

For a circle of radius R:

R
70, R) = % /0 P (r) dr. (5)

where §(0, R) is the area-average soil lead (mg/kg) inside radius R (metres);
g(r) is the predicted soil lead at distance r. This is a standard polar-coordinate
mean value formula (e.g., (Stewart, 2016), Sec. 15.3).

We compute the inner-zone mean as (0, 165). The mean for the 165-5,000 m

ring is then obtained from the two disk means:

5,0002 (0, 5,000) — 1652 5(0, 165)
5,0002 — 1652 '

§(165, 5,000) = (6)

where the numerator subtracts the total “lead mass” (area x mean) of the inner

disk from that of the larger disk, and the denominator is the ring area.
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