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1 Introduction

International labor mobility (worker migration) and trade in services (such as overseas tourism

and study) require personal interaction. Personal interaction, however, can also spread infectious

disease, causing a “manifest externality” (Bleakley 2007). Together, these imply that negative ex-

ternalities from the spread of new pandemic diseases could be internalized by Pigouvian taxes

or quotas on international human mobility and raise global welfare. It is well known that tem-

porary, domestic Pigouvian restrictions on some in-person economic interactions—embraced by

Pigou (1920, 169) himself—might raise welfare if the marginal economic cost of disease trans-

mission exceeds the economic bene�t of the targeted interactions (Fenichel 2013; Adda 2016).

But can permanent Pigouvian limits on international human mobility raise welfare? This ques-

tion does not refer to brief emergency travel restrictions amid a raging pandemic, which have

received extensive study.1 Rather, in this paper we ask if limits on generalized international eco-

nomic integration via human mobility—in normal times, before a pandemic begins—can raise

welfare by internalizing the externality of transmitting new, emergent pandemics.

In principle, the degree of pre-existing global integration via international migration and travel

can aggravate morbidity and mortality once a pandemic begins (Barro et al. 2020; Antràs et al.

2020).2 This implies that countries’ pre-pandemic exposure to international mobility, despite

its positive e�ects on income per capita (Campante and Yanagizawa-Drott 2018), may be in-

e�ciently high. The 1918 in�uenza pandemic killed over 50 million worldwide (Johnson and

Mueller 2002). Pandemics also bring severe economic costs by restricting social interaction and

exchange (Rasul 2020), with costs persisting for several decades via in utero morbidity (Almond

2006; Neelsen and Stratmann 2012; Guimbeau et al. 2020) and reduced capital investment (Jordà

et al. 2020). The economic cost of pandemic risk per year—in all years—has been estimated at

0.7% of global GDP (Fan, Jamison and Summers 2016). “Smart policies have to weigh the costs and

1For reviews of these policies, see Ferguson et al. (2006), Mateus et al. (2014), and Ryu et al. (2020). We discuss
these �ndings in Section 7, but our paper does not address the value of emergency travel restrictions enacted to
mitigate ongoing pandemics.

2Barro et al. (2020, 7–8) write, “[T]he �u death rates from the Great In�uenza Pandemic [of 1918] . . . likely represent
the worst-case scenario today [in 2020], particularly because public-health care and screening/quarantine procedures
are more advanced than they were in 1918–1920. Other factors, such as greater international travel, work in the
opposite direction”.
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bene�ts of uninhibited exchanges of people,” Voth (2020, 95–96) writes. “Severe restrictions may

well be desirable and justi�able, bringing to an end a half-century of ever-increasing individual

mobility.”

In this paper, we assess the theoretical and empirical case for permanent Pigouvian limits on in-

ternational mobility under the risk of emergent pandemics. We begin by presenting a standard

Kermack-McKendrick (1927) SIR model of epidemic transmission, extended to include travel be-

tween a foreign country where the outbreak emerges and a home country. The base model yields

three predictions: 1) lower pre-pandemic international arrivals delay the pandemic’s arrival in

the home country, to a small degree; 2) the date of arrival is unrelated to the overall harm; and

therefore 3) the volume of pre-pandemic arrivals has no e�ect on the overall harm of the pan-

demic in the home country—that is, it carries no negative externality in the form of additional

expected sickness or deaths during a pandemic. In brief, this is because the Poisson process

representing the arrival of the �rst infected traveler quickly approaches certainty even under

very small travel volumes, and once the infection crosses the border, the harm it causes is fully

determined by within-country determinants of transmission.

An externality from pre-existing international mobility does arise in extensions of the base

model. For example, externalities can arise from pre-existing international mobility if the degree

of pre-existing mobility constrains the degree of feasible emergency travel restrictions during

the pandemic. Theory suggests, perhaps counter-intuitively, this externality could be negative

or positive, and that the magnitude would be small in a typical pandemic. Other extensions of

the base model, such as rapid learning about treatments during the pandemic’s initial stages or

linking mobility to innovation, likewise extend the predictions. We therefore test the simple

predictions of the base model across the four global pandemics for which the necessary epi-

demiological data exist: backwards in time, these are the in�uenza pandemics that began in

2009, 1957, 1918, and 1889. We test the empirical relationship between pandemic arrival delay

and large variation in predetermined exposure to human mobility across both space and time.

We test the empirical relationship between pandemic arrival time and mortality, and where pos-

sible, we directly test the relationship between exposure to international mobility and pandemic

mortality.
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We �nd that large changes in pre-pandemic exposure to international mobility have a small as-

sociation with arrival time and no association with the harm to population health. A 50 percent

lower exposure to pre-pandemic international mobility is associated with delayed pandemic ar-

rival by roughly one week. Even 90 percent lower exposure to mobility—across countries or

across time—is associated with an increased delay of 1–2 months. We �nd no evidence that

delayed arrival correlates systematically with lower morbidity or mortality in any of the pan-

demics. In some cases, in fact, delayed arrival correlates with greater harm (such as in 1918) and

greater exposure to mobility correlates with reduced harm (such as in 2009). These results are

robust to a range of di�erent regression speci�cations and di�erent measures of mobility, mor-

tality, and start-date. We conclude that the economic case for permanent Pigouvian restrictions

on international mobility due to pandemic externalities is weak.

The contribution of this paper is twofold. First, it theoretically clari�es the conditions under

which permanent Pigouvian restrictions on international mobility can improve welfare by in-

ternalizing pandemic externalities. Second, it o�ers empirical tests of those conditions in four

real pandemics using voluminous data from a range of historical sources. It adds to the economic

literature exploring the health externalities of domestic economic activity (Fenichel 2013; Goyal

and Vigier 2015; Adda 2016; Glaeser et al. 2020; Milusheva 2020) and the links of international mo-

bility and economic integration with the international spread of disease (Montalvo and Reynal-

Querol 2007; Baez 2011; Horan et al. 2015; Zimmermann et al. 2020). Montalvo and Reynal-Querol

(2007) and Milusheva (2020) speci�cally �nd movements – international and domestic, respec-

tively – increase the spread of malaria. Since the threat of malaria is known and ongoing in these

settings, these results are closest to our extension allowing travel to continue during a pandemic

and are not in con�ict with our core �ndings on the externality of pre-pandemic mobility. This

paper builds on a theoretical literature in epidemiology and mathematical biology (in particular

Ma and Earn 2006; Arino et al. 2007; and Scalia Tomba and Wallinga 2008) and complements a

large literature in epidemiology focusing on emergency travel restrictions, discussed later.3

The economic case for generalized limits on international mobility to address pandemic exter-

3Our �ndings complement those of Lee et al. (2020) and Ahsan et al. (2020), who �nd that parts of migrant-
origin countries with higher exposure to pre-existing migration have exhibited higher prevalence and mortality in
the ongoing pandemic of coronavirus disease (covid-19). This pattern is predicted by our model: in an ongoing
pandemic, earlier arrival correlates mechanically with higher prevalence and mortality at any given moment in time.
We study pandemics that have concluded, allowing tests of the theory’s predictions about �nal size.
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nalities is analogous to the standard economic case for speed limits on car travel. Society limits

drivers’ speed permanently—not just during emergencies—as a Pigouvian quota to internalize

the external risk to others’ lives caused by some drivers’ bene�t from fast travel (Ashenfelter

and Greenstone 2004, S231). Our results, however, suggest that this analogy may be misplaced.

Permanent, pandemic-related limits on international mobility, such as increased visa barriers

(Czaika and Neumayer 2017), may more closely resemble speed limits for passenger airliners to

avoid collisions. A policymaker might seek to address the public’s fears of dying in an airliner

accident by mandating a reduction in cruising-altitude airspeed from 500 to 250 miles per hour.

But there is little theory or evidence to support the idea that this would reduce the risk of death

(e.g. Boyd 2017). (It might even unintentionally increase the risk, by forcing planes to spend

longer in the air.) As long as air travel occurs at all, its external harms are not correlated with

aircraft speed over a meaningful range, and Pigouvian restrictions on speed would only reduce

welfare. Similarly, basic theory and evidence from major pandemics imply that permanent limits

on international mobility would have little bene�t to o�set their very large costs, bringing the

world no closer to the Pigouvian optimum.

2 Model

We model the relationship between pre-existing international travel—travel before the initial

case of a pandemic disease—and the �nal size of the pandemic. We incorporate travel into a

Kermack-McKendrick (1927) model of disease transmission, building on Brauer and van den

Driessche (2001), Ma and Earn (2006, 691), Arino et al. (2007), and Scalia Tomba and Wallinga

(2008). The disease will emerge in a foreign country, and we examine how the volume of pre-

existing travel to the home country a�ects the outbreak in the home country.

Our research question is how levels of travel before a pandemic a�ects the evolution of the pan-

demic. We distinguish between levels of travel before and during the pandemic, since the latter

can be changed by emergency travel restrictions independent of the levels before the pandemic.

We present the results under di�erent emergency restrictions. In the base case, emergency travel

restrictions are implemented when the disease arrives in the home country. We then extend the

results to allow travel to continue during the pandemic. In both cases, pre-pandemic levels of
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travel determine the onset date, re�ecting the di�culty of immediately enacting e�ective emer-

gency travel restrictions.

2.1 Base Model: Travel and Onset Date

The �rst outcome we examine is the expected onset date in the home country, C̃ . Let a proportion

� ∗(C) of foreigners in the foreign country be infected at time C . In each period, " foreigners are

randomly selected to travel to the home country, and the selection is independent of their health

status. The probability of drawing at least one infected traveler in" draws in period C is then4,5

_(", C) = 1 − (1 − � ∗(C))" . (1)

The arrival of at least one infected traveler in each period can be approximated as a non-homogeneous

Poisson process with the parameter _(", C) as in Scalia Tomba and Wallinga (2008).6 LetΛ(", C) =∫ C
0 _(", B) 3B . The time of the expected �rst occurrence—the onset date—is represented as:

C̃ (") =
∫ )

0
C _(", C) 4−Λ(",C )3C (2a)

= −C 4−Λ(",C )
����C=)
C=0
+

∫ )

0
4−Λ(",C )3C (2b)

≈
∫ )

0
4−Λ(",C )3C, (2c)

where ) represents a time when all countries have at least one case.7 The �rst step comes from

integration by parts and the second step approximates the �rst term as 0.

The �rst result is the inverse relationship between the onset date and the number of incoming

travelers, represented by 3C̃
3"

< 0. Intuitively, more people traveling decreases the chance that

none of them are infected in any given period.
4The parameter is an approximation of sampling with replacement.
5If only one origin country has infections," is the number of travelers from that country. If multiple origins have

di�erent rates of infection, the parameter could be adapted to 1 − (1 − �∗1 )
"1 (1 − �∗2 )

"2 , etc. The same modi�cations
can be made to allow di�erent prevalence among demographic groups in the foreign country.

6A non-homogeneous Poisson process is an approximation of repeated Bernoulli trials with a time-varying pa-
rameter.

7Equation A.2a parallels the exponential distribution which represents inter-arrival periods for a homogeneous
Poisson process. Intuitively, the density function is the probability of arrival in period C , _(", C), times the probability
of no arrivals through period C , 4−Λ(",C ) . For the derivation for non-homogeneous Poisson processes, see Ma (2011).
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Figure 1: Travel �otas: International mobility and the timing of pandemic arrival

(a) Onset Date and Incoming Travel (b) Delay in Onset and Reduction in Travel

Figure 1a plots the onset date after the �rst global case and the total number of incoming travelers. Figure 1b plots
the reduction in the expected onset date by reducing incoming arrivals, with the percent reduction on the x-axis. The
values correspond to Equations 3 and 4, respectively. The lines correspond to di�erent exponential rates of growth
in the foreign country at the pandemic’s onset, 1, which are a function of R0: 1 = V∗ − W =

R0
(
− 1

(
, where V∗ is

the transmission rate in the foreign country, W is the recovery rate as outlined in Equations A.1a-A.1c, and ( is the
generation time. The black line corresponds to R0 = 1.7 (V∗ = 0.61) in the foreign country, the orange line to R0 = 1.5
(V∗ = 0.54), and the teal line to R0 = 1.3 (V∗ = 0.46), with a value of ( = 2.8 which corresponds to W = 0.36. The values
correspond to the 75th, 50th, and 25th percentile estimates, respectively, of R0 for H1N1 in Biggersta� et al. (2014)’s
survey of estimates in the literature.

However, the delay from reducing the number of travelers will be minimal without drastic cuts to

travel, which includes both foreigners arriving and returning citizens, since anyone can transmit

spread a disease. We summarize the intuition of the closed form solution here and derive it in

the appendix. First, we model � ∗(C), the proportion of the infected foreign population over time,

to grow exponentially as in the standard Susceptible-Infectious-Recovered model at the start of

the pandemic. A small number of people are infected initially, and the probability of drawing

an infected traveler is close to 0. The probability increases in the number of travelers, but the

marginal e�ect of additional travelers is small in accordance with Equation 1. As the disease

grows exponentially, the number of travelers must be reduced exponentially in order to keep

the probability of drawing an infected traveler small. We approximate the relationship between

the onset date C̃ and the incoming travelers " as:

C̃ (") ≈ 1
1

(
;=(0.2%) − ;=(")

)
, (3)

where 1 is the initial exponential growth rate of the disease and % is the population size of
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the foreign country.8 The e�ect of an additional incoming traveler on the onset depends on

the exponential growth rate of the disease in the foreign country and the log of the number of

travelers.

If a quota reduces travel by some fraction 0 6 @ < 1 of the previous level, the start of local

transmission is delayed by

C̃
(
(1 − @)"

)
− C̃ (") ≈ −;=(1 − @)

1
. (4)

Therefore, while reducing travel can delay the onset, the delay would likely be minimal. For

example, with 1 = 0.18 (corresponding to R0 = 1.5), a 50 percent reduction in the migration rate

delays the start of local transmission in the home country by 3.9 days. A 90 percent reduction

in migration provides a delay of 12.8 days, while a 99 percent reduction buys 25.6 days. Similar

conclusions have been reached with alternative derivations (Scalia Tomba and Wallinga 2008).9

We then have:

Prediction 1. The start-date of local transmission in the home country is inversely related

to the prior migration rate. For a range of plausible reproduction numbers and recovery

rates, a reduction in migration by an order of magnitude delays onset by 1–3 weeks. �

This highly stylized, two-country model of arrival time serves only as a benchmark against which

to compare the empirical results below. The recent epidemiology literature focuses on more

sophisticated models of arrival time based on network di�usion (Colizza et al. 2006; Gautreau et

al. 2008; Brockmann and Helbing 2013). For this reason we later check the empirical results for

robustness to adjustments for the network centrality of travelers’ origin countries.

8In the SIR model, 1 ≈ V∗ − W , where V∗ is the transmission rate in the foreign country and W is the recovery rate
in both countries as outlined in Equations A.1a-A.1c (Ma 2020).

9Scalia Tomba and Wallinga (2008) reach a similar relationship for the delay in median arrival time, although 1 in
their model is the approximate exponential growth rate of Λ(C) = 041C , where ours is the approximate exponential
growth rate of �∗ (C).
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2.2 Base Model: Travel, Onset Date, and Final Size

The main outcome we examine for the home country is the overall harm. In the base model, a

strict emergency travel restriction is imposed once the disease arrives in the home country that

stops all international travel. The disease follows a standard Susceptible-Infectious-Recovered

model (Kermack and McKendrick 1927). Under mass-action incidence — equal probability of

every person within the country’s borders coming into contact with one another — the fractions

of susceptible ((), infectious (� ), and recovered/removed (') follow

¤( = −(V� (5a)

¤� = (V� − W� (5b)

¤' = W�, (5c)

with a dot to denote the time derivative. The transmission rate V is the probability of transmis-

sion from an infectious to susceptible person in country 8 per unit time, and the recovery rate W

is the reciprocal of the mean infectious duration. The basic reproduction number, the number of

infections in an all-susceptible population generated by one infectious case, is R0 ≡ V/W .

Let the �nal size of the local epidemic, the fraction of the home population infected over its entire

course, be � ≡ ( (0) − ( (∞).10 The population is fully susceptible before the outbreak (( (0) = 1),

and the disease dies out (� (∞) = 0) (Ma and Earn 2006, 693). The �nal size can be determined

by:

ln(1 − � ) = ln(( (∞))

=

∫ ∞

0

¤(
(
3C

= −V
∫ ∞

0
� 3C,

10Some parts of the literature call the share � the ‘attack rate’, reserving ‘�nal size’ for the absolute number of cases
(Andreasen 2011, 2308). Here we follow the terminology of Ma and Earn (2006). The exclusive dependence of �nal
size on R0 was �rst derived in a di�erent form by Kermack and McKendrick (1927) and its remarkable robustness to
relaxing many of the strong assumptions here is explored inter alia by Thieme (1977), Newman (2002), Ma and Earn
(2006), Arino et al. (2007), Andreasen (2011), and Miller (2012).
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with the last equality from dividing Equation 5a by S and integrating. Now∫ ∞

0
� 3C =

1
W

∫ ∞

0
¤' 3C

=
1
W
('(∞) − '(0))

=
1
W
�,

with the �rst equality from integrating Equation 5b. Now

� (R0) = 1 − 4−R0� (6)

= 1 + 1
R0

W
(
−R04

−R0
)
, (7)

where W is Lambert’s product-log function (Corless et al. 1996, 337), single-valued when R0 > 0.

In the base case, when travel is stopped at the onset in the home country, it is apparent that the

�nal size is independent of the onset date. The �nal size is only a function of V and W , the disease

parameters in the home country.

Prediction 2. Under mass-action incidence, the expected �nal size of any pandemic is

independent of the start-date of local transmission. �

Predictions 1 and 2 imply an additional prediction:

Prediction 3. If travel stops when the pandemic reaches the home country, then under

mass-action incidence, the expected �nal size of any pandemic in the home country is

independent of the prior immigration rate. �

2.3 Extension: R0 varying over time

Several assumptions, however, are important to relax for our research question. First, in our

standard model, R0—and therefore �nal size—does not depend on C or C̃ . Additional time prior

to onset could be used to set up systems of contact tracing, build hospital capacity, develop

testing, discover a therapeutic, or install other measures that would decrease V or increase W .

9



These would reduce R0 and hence the �nal size. Since a lower rate of travel pushes back the

expected onset date, this is one channel that could overturn our second prediction.11 However,

it is important to note that R0 must vary with the global onset date. If R0 varies relative to

the country’s onset date—i.e. behavior changes once people see the implications, or a country’s

preparations begin at domestic onset—then a later arrival will not a�ect the �nal size.

Second, travel also has direct bene�ts that could reduce R0. Travel during, but especially before,

the pandemic facilitates the spread of ideas, technology, workers, and supplies that could aid

prevention and treatment (e.g. Hovhannisyan and Keller 2015; Bahar et al. 2020).12

The true object of interest should therefore be the total derivative of �
(
R0(C̃ ("), ")

)
with re-

spect to " :
3�

3"︸︷︷︸
?

=
m�

mR0︸︷︷︸
>0

mR0

mC̃︸︷︷︸
<0

3C̃

3"︸︷︷︸
<0

+ m�

mR0︸︷︷︸
>0

3R0

3"︸︷︷︸
<0

, (8)

which has an indeterminate sign under our formulation and hypotheses. The relationship be-

tween the �nal size and pre-existing travel depends on the relative e�ects of travel pushing the

onset date forward and contributing to the preparedness and response.

2.4 Extension: Continuing Travel

In the base model, an emergency travel restriction stops all travel once the disease arrives in the

home country. However, strict emergency travel restrictions may be infeasible or undesirable,

and the level of continued travel may be related to the our main variable of interest, the level of

travel before the pandemic. We therefore relax this emergency travel restriction and allow travel

to continue during the pandemic.

Assume travelers are drawn from the foreign population as before and stay in the home country

for one period. The proportion of foreigners in the home country is then ? = "/(" +# ), where

# is the total home country population. We assume foreigners and home citizens perfectly

11Similarly, deaths as a proportion of the infected could depend on C and therefore C̃ .
12During the pandemic, travel could also increase R0 if the activities of travel itself – being on a plane or bus, in

an airport, etc. – increase disease transmission.
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mix so that all individuals are equally likely to interact and therefore spread the disease to one

another. The probability that a given interaction in the home country is with a foreigner is then

? .

Under this assumption of mass-action incidence—homogeneous and perfectly mixed populations—

the fractions of home citizens who are susceptible ((), infectious (� ), and recovered/removed (')

now follow

¤( = −(V
(
(1 − ?)� + ?� ∗

)
(9a)

¤� = (V
(
(1 − ?)� + ?� ∗

)
− W� (9b)

¤' = W�, (9c)

with a dot to denote the time derivative as before and � ∗ to denote the proportion of foreigners

who are infected.

De�ne � ∗ ≡ W
∫ ∞

0 � ∗3C , the �nal size in the foreign country without travel.13,14 Deriving the �nal

size as before leads to:

� ′(R0, ?, �
∗) = 1 − 4−R0 ( (1−?)�+?� ∗) . (10)

If travel continues throughout the pandemic, then the �nal size in the home country depends

on the �nal size in the foreign country and the number of travelers allowed in. If � = � ∗, i.e.

R0 is the same in both countries, then the �nal size in the home country is also independent of

the rate of travel. If the �nal size is higher in the foreign country, then continuing travel will

increase the �nal size in the home country, consistent with many people’s intuitions. However,

if the �nal size is lower in the foreign country, then continuing travel will lower the �nal size in

the home country as the travelers are less likely to spread the disease than home citizens.

However, the e�ect is again likely to be small in this model. From our data on international travel

13We �x W across countries, as it largely depends on biological characteristics of the disease, and allow V to vary
across countries.

14The model abstracts from the e�ect of return travelers on the foreign country. In such a model with bilateral
�ows of travelers who can be infected in either country, the �nal sizes across countries converge, and the increases in
�nal size are attenuated towards 0 relative to this model. The proportion of travelers in each period would determine
the speed of convergence. We thank Sian Tsuei for this comment.
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Figure 2: Final Size: International mobility and the total number of infected

(a) Final Size and R0 with no immigration (b) Changes in Final Size due to continuing travel

Panel a shows Equation 7. Panel b shows � ′ (R0, ?, 1.5) − � (R0) on the y-axis, the increase in �nal size due
to continued travel from a country with R0 = 1.5 (� ∗ = 0.58) , as the level of the travel, ? , varies. The lines
correspond to di�erent R0’s, and therefore �nal sizes, for the home country. The black line corresponds to
R0 = 1.7 (� = 0.69) in the home country, the orange line to R0 = 1.5 (� = 0.58) , the teal line to R0 = 1.3
(� = 0.42) , and the maroon line to R0 = 1.1 (� = 0.18) .

described below, ? , the percentage of recently-arrived international travelers in the population

at any given time, is about 1.5 percent in the median country, and 4 percent in the average

country.15 Thus, very quickly after the pandemic arrives, any given person’s chance of acquiring

the disease from an infected local greatly outstrips the chance of acquiring it from an infected

traveler.16 Di�erences in � and � ∗, stemming from di�erences in R0, are also likely to be small

since the disease is the same. Figure 2b maps these potential changes for di�erent R0’s in the

home country.

This simple model’s ambiguous predictions highlight the importance of empirical tests, which

we present below.

15We de�ne recently-arrived as the total number arriving in an average 10-day window.
16Russell et al. (2020) estimate that during the covid-19 pandemic, by May 2020 the fraction of incident infections

from international travelers would have been less than one percent of all incident infections in most countries on
earth, even if no country had imposed emergency travel restrictions during the pandemic.
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3 Data on four pandemics

Testing the three hypotheses requires collecting three types of country-level data: pandemic �nal

size, pandemic arrival time, and the international mobility of people. We require the pandemic

to be over, allowing estimation of �nal size. We require data to be available for pandemics that

caused substantial mortality in numerous countries, because estimates of incidence/prevalence

alone are severely biased by cross-country di�erences in diagnostic methods. We also require

these to be available for pandemics that spread rapidly, and thus became relevant to generalized

restrictions on international migration. These criteria admit exactly four pandemics. In reverse

chronological order, these are the in�uenza pandemics that began in 2009 (‘Swine �u’), 1957

(‘Asian �u’), 1918 (‘Spanish �u’), and 1889 (‘Russian �u’). Economic activity requiring interper-

sonal interaction is known to sharply increase in�uenza transmission (Markowitz et al. 2019).

We investigate all four of these historical episodes.

Our criteria exclude a number of episodes. The requirement that the pandemic have concluded

excludes covid-19. The requirement of broad-based mortality excludes pandemics that only

caused substantial mortality in a limited number of countries, such as the Severe Acute Respira-

tory Syndrome (SARS) outbreak of 2002, the Middle East Respiratory Syndrome (MERS) oubreak

of 2012, and the Ebola virus outbreak of 2013. For these, reliable country-level estimates of �nal

size do not exist for a large number of countries. The requirement of rapid spread excludes pan-

demics whose international dissemination progressed over decades. This excludes Zika virus,

which spread from Uganda across Africa and Asia and then through Latin America between

1952 and 2016. Most notably, it excludes Human Immunode�ciency Virus (HIV-1 group M sub-

type B), which spread from Central Africa around 1930, to Haiti around 1966, to the United

States around 1969, and around the world step by step from 1981 to 2001 (Gilbert et al. 2007). We

likewise omit pandemics for which no country-level estimates of �nal size exist. This excludes

several in�uenza pandemics before 1889 (Patterson 1985) and pandemics of yellow fever, cholera,

and bubonic plague in the 19th century. It also excludes the pandemic of H3N2 in�ueza in 1968

(‘Hong Kong �u’), for which �nal mortality estimates have only been computed for six countries

(Viboud et al. 2005).
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3.1 Final mortality

For 2009 in�uenza, we use two independent sources of data on �nal mortality, one from the liter-

ature and one that we create. We begin by using the country-level, all-age respiratory mortality

estimates of Simonsen et al. (2013), which build on the earlier estimates of Dawood et al. (2012).

These estimates are based on directly-reported mortality rates from 26 countries, and imputed

for 185 other countries by modeling from country-level observable traits such as income per

capita, population density, and physicians per capita.

While these are the best country-level estimates of 2009 in�uenza �nal mortality in the litera-

ture, they have an important limitation for our purpose: the covariates used for imputation are

country-traits that we wish to control for in some regressions. For this reason, we check the ro-

bustness of all subsequent tests with alternative measures of mortality. The �rst is based on our

own estimates of excess in�uenza-like illness mortality based on direct (not imputed) mortality

reports to the World Health Organization, described below. The second is to restrict analysis of

the Simonsen et al. sample to the 26 countries that directly reported mortality rates. The third

is a reanalysis using the mortality estimates of Dawood et al. (2012), which are independently

imputed by a di�erent method.

We construct our independent measure of 2009–2010 H1N1 in�uenza mortality by computing

excess in�uenza-like illness mortality as follows. From the WHO Mortality Database (December

15, 2019 update), for each year we draw the number of deaths reported by each country due to

in�uenza-like respiratory illness17 in people age 15–49. We use that age range because dispro-

portionate mortality among prime-age adults strongly distinguished 2009 pandemic in�uenza

from seasonal in�uenza (Shrestha et al. 2011; Simonsen et al. 2013). We then �t the trend in

these mortality rates by regressing annual mortality from the four years before and after the

pandemic (2005–2008 and 2011–2014) on year with Kernel Regularized Least Squares (KRLS,

Hainmueller and Hazlett 2014) which simultaneously chooses parameters to maximize �t while

choosing functional form to maximize smoothness. This allows a nonlinear �t in a small-#

setting without arbitrary choices of functional form. The method imputes separately for each

17International Classi�cation of Diseases, Tenth Revision, Clinical Modi�cation [ICD-10-CM] codes J09–J18 and
J20–J22. This includes deaths from pneumonia as Noymer (2008) recommends.
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country the counterfactual on-trend mortality for 2009 and 2010. Our 2009 pandemic in�uenza

mortality estimate is then the sum of excess mortality above trend for 2009 and 2010, for each of

99 countries. In the Appendix we plot the raw data and KRLS curve�ts demonstrating that this

method systematically isolates anomalous �u deaths in 2009–2010 and show that it does not do

so in placebo years.

For 1957 in�ueza, we use the estimates of �nal mortality at the country level by Viboud et al.

(2016). For 1918 in�uenza, we use the �nal mortality estimates for all of 1918 in Johnson and

Mueller (2002, 110-114) and for the fall wave alone in Patterson and Pyle (1991, 14–15), harmo-

nized as described in the Appendix. For 1889 in�uenza, �rst wave, we use the city-level excess

mortality estimates of Valleron et al. (2010).

3.2 Time of arrival

We use date of arrival as the date of the �rst reported case inside a country. For 2009 in�uenza,

we draw on the daily arrival dates in 93 countries compiled by Balcan et al. (2009), but expand

this to 193 countries using the sources enumerated in the Appendix. For 1957 in�uenza we take

monthly arrival dates from UNESCO (1958, 12–13). For 1918 in�uenza (overall and fall wave

only) we draw many arrival dates, daily or monthly, from Patterson and Pyle (1983, 1991) and

Frost and Sydenstricker (1919), but we augment their data with numerous additional countries

using the sources enumerated in the Appendix. For 1889 in�uenza we draw many country-level

arrival dates, most daily and a few monthly, from Parsons (1891b, 11–50), but augment his data

with numerous additional countries using the sources enumerated in the Appendix. Also for

1889 in�uenza, we draw city-level weekly arrival dates from Valleron et al. (2010), alternatively

de�ned (as in the source) as either date of �rst deaths or date of peak deaths.

3.3 Human mobility

For the main independent variable, our goal is to count all cross-border movements, including

foreign tourism, citizens returning from abroad, and immigrants arriving across land, air, and sea

ports of entry, since any could bring a disease to the destination country. We estimate these �ows

at the bilateral level using two main datasets on travel and migration and a simple method to
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predict missing values. We use the bilateral �ows to aggregate up to country-level measures and

to construct a centrality measure to weight arrivals in robustness checks. We focus on the H1N1

pandemic as the only time period when these data are reliably available, and the year 2008—the

year before the virus emerged in April 2009—to avoid any endogenous changes in travel patterns

due to its spread.

3.3.1 Base measures of exposure to international travel and migration

We build on the methodology of the Global Transnational Mobility Dataset (GTMD), which esti-

mates bilateral �ows between 2011 and 2016 (Recchi et al. 2019). We construct our own estimates

in order to expand the number of countries in the sample, estimate �ows for 2008, separate non-

citizen and citizen arrivals, and modify the methodology. Our estimates are highly correlated

with the GTMD, and our results on the onset date and �nal size of the H1N1 pandemic are ro-

bust to using the GTMD estimates from 2011. We summarize our data and methodology here

and provide a detailed description in the Appendix.

First, we use data on arrivals of non-resident travelers collected from destination governments

and standardized by the United Nations World Tourism Organization (UNWTO 2020a). UNWTO

publishes yearly arrivals, disaggregated by nationality or country of origin, for 176 countries to

all ports of entry starting in 1995.18 Most countries, however, do not report arrivals from all

nationalities, and forty-two countries did not submit any arrival data for 2008. Overall, 26% of

cells in the matrix of bilateral �ows for 2008 can be populated by the data from UNWTO.

We therefore impute missing values using a random forest algorithm, trained with the UNWTO

data and supplementary country- and bilateral-level datasets. We use 16 variables for training,

including the �ow of travelers in the reverse direction when available, population sizes, GDP per

capita, direct �ights, migration �ows, geographic and linguistic distance, and historical ties. The

accuracy of the prediction against a testing dataset suggests the algorithm has strong predictive

power, as discussed in the Appendix. The imputations account for 4% of the global estimated

18These data are published by UNWTO as Outbound Tourism for each origin country, and we append and reorient
for arrivals to the destination country, as they were originally supplied. Tourists are usually de�ned as non-residents
staying at least one night and less than one year, although a few countries also count day trips without an overnight
stay. Most of the data are reported by travelers’ nationality, but some are supplied by country of origin. Further
details are available in the Appendix.
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�ows, with a median of 6% and mean of 30% at the country level. Overall, while many bilateral

observations are missing, most of the unreported data are likely to come from nationalities with

few arrivals when the country reports any data. Our results are robust to using only the data

and countries reported by the UNWTO.

The UNWTO data and imputations provide estimates of all non-resident short-term arrivals. For

returning residents, we follow the GTMD methodology and assume that all these arrivals return

to their country of residence in the same year. Summing resident and non-resident arrivals in

each cell therefore creates a symmetric matrix of total incoming short-term �ows.

Since the UNWTO data exclude migration, we also incorporate recently published estimates of

migration �ows (Azose and Raftery 2019). The authors use data on migrant populations from

the United Nations and regional estimates of migration �ows to model and estimate global �ows

across �ve-year periods, including both immigrants and returning citizens. We divide their es-

timates for the 2005-2010 period by �ve to estimate migrant �ows in 2008. As migration �ows

are often not equal within country pairs, the �nal matrix of bilateral �ows is asymmetric.

Our main measure of mobility is then the sum of incoming non-residents for short-term travel,

residents returning from short-term travel, incoming immigrants, and citizens returning from

emigration. While these are not true counts and depend on the modeling and standardization

assumptions, we believe they represent the best estimates for mobility in 2008 and that the mea-

surement error does not a�ect our conclusions.

The mobility data are summarized globally and for the top 20 countries in Table A1. We estimate

over 2 billion international trips in 2008, or approximately 0.3 trips per capita. China, Germany,

the United States, and Hong Kong recorded over 100 million international trips each, with the

average country just under ten million, and the median country estimated at 1.7 million. The

composition of foreign arrivals and returning citizens vary signi�cantly; while 80% of China’s

international trips are foreign arrivals (notably including Hong Kong and Macao), 83% of Ger-

many’s international arrivals are German residents returning from abroad. We estimate less than

1% of global travel was for long-term migration; in most countries, incoming migrants represent

a very small fraction of the total international travelers who may be carrying a disease.
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3.3.2 Centrality Weights

Aggregating mobility data at the country level implicitly assumes that each traveler is equally

likely to carry a disease. This is a reasonable approximation for the �rst period that an infected

person travels internationally, when anyone could be patient zero. However, our Prediction 1

says that once the virus starts spreading abroad, travelers from countries with more incoming

travel are more likely to be infected in the intermediate stages on average—regardless of where it

originated—until it spreads everywhere. Our goal is therefore to weight arrivals in the empirical

model by their centrality in the global network to accurately capture the potential risk each

traveler poses.

We base our centrality measure on the proportion of global travel that arrives in the country,

consistent with the idea that in the �rst stage, all travelers are equally likely to be infected. We

then weight this proportion by the proportions of their origins’ in�ows, and weight the origins’

in�ows by their origins’ in�ows, and so on. This product of matrices converges to the eigenvector

of the matrix of the proportion of global �ows.19

However, in order to better represent the likelihood of importing the disease in the initial stages

of an epidemic, we leave out each country’s top origin country from this matrix of in�ows.20

Most countries’ in�ows are heavily concentrated from one or two neighbors. For instance,

54% of arrivals to China come from Hong Kong, and 83% of arrivals to Hong Kong come from

China - countries with the most (China) and fourth-most (Hong Kong) total international in-

�ows. Weighting in�ows by the origins’ in�ows repeatedly counts �ows within these clusters,

but centrality is intended to measure global exposure beyond these regional clusters or large

bilateral �ows - diversity as well as volume. If most travel is within a cluster, and the disease

does not originate in the cluster, this within-cluster movement represents less potential disease

exposure than a hub with a similar volume of tra�c from many origins.

The concentration, and therefore importance of excluding the top origin country, is evident from

19Banerjee et al. (2013) show that their related measure, Di�usion Centrality, also converges to eigenvector cen-
trality.

20We replace the in�ow with 0 and re-calculate the proportion of global travel, so that the sum of all bilateral �ows
is still 1. However, since the denominators are the same for every cell in the matrix, they do not a�ect the eigenvector
measure.
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the empirics. Let _8 represent the eigenvector centrality from excluding 8 top origin countries

and scaled to a mean of 1. When all origin countries are included (_0), the highest centralities

are China at 65.7, Hong Kong at 61.2, Macao at 27.8, and Japan at 4.66. Leaving out the top origin

country (_1) - our preferred centrality measure - the highest centrality weights are Germany

at 23.4, France at 21.2, and Spain at 17.8.21 The correlation between _0 and _1 is 0.12, showing

the signi�cant dependence of the measure on one origin. However, the correlation between _1

and _2 (when the top two origin countries are dropped) is 0.98, and the correlation between

_1 and _5 is 0.91. This “leave-one-out” centrality (_1) provides a measure that is less reliant on

one neighbor and better captures global exposure to an epidemic. It therefore represents our

preferred centrality weight in the regressions below, and we include additional speci�cations

with _0—no origin countries excluded—in the appendix.

4 International mobility and arrival delay

We �rst test Prediction 1, that di�erences in international mobility have a negative and small

correlation with di�erences in pandemic arrival dates. We perform two separate tests, each

using a di�erent source of variation in international mobility: across countries or over time.

4.1 Differences in mobility across countries: Influenza 2009

For the 2009 in�uenza pandemic, we have reliable country-level data on relative exposure to

international mobility. We can then compare this exposure to the date of pandemic arrival. Fig-

ure 3a plots each country’s average immigration per capita during 2005–2010, on the horizontal

axis, against the day of pandemic arrival, on the vertical axis. The solid line shows a linear

OLS �t with a 95 percent con�dence interval on the predicted mean. The dashed line shows a

nonparametric Nadaraya-Watson (1964) kernel regression. Figure 3b repeats the exercise using

incoming trips per capita.

Countries at the right edge of the �gures have 1,000 times as much per-capita exposure to im-

migration, and 10,000 times as much exposure to incoming trips, as countries at the left edge.

21For comparison, China is the ninth most central at 4.2, while Hong Kong is 35th at 1.2 and Macao is 57th at 0.49.
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Figure 3: Influenza 2009: International mobility and the timing of pandemic arrival
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(b) International travel
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Solid line shows OLS �t surrounded by 95% con�dence interval of the predicted mean, in gray. Dashed line
shows nonparametric Nadaraya-Watson (1964) regression, Epanechnikov kernel, bandwidth 1.5 natural log
points (0.651 log10 points). Country labels are ISO-3166 U3 codes.

This is associated with a di�erence in pandemic arrival time of about 4 months (linear �t) or 1–2

months (nonparametric �t).

The �gure implicitly treats arrivals from all countries as equally capable of transmitting disease.

To relax this assumption, the top panel of Table 1 shows the linear regression coe�cient esti-

mates with and without weighting by our measure of country connectivity. We weight countries

based on the proportion of global travel that arrives in the country, weighted by the proportions

of their origins’ in�ows, and so on, as described in Section 3.3.2—given that network di�usion

can a�ect arrival time at any give node (Gautreau et al. 2008). The coe�cient estimates with

and without weights are statistically indistinguishable. With these connectivity weights, the

estimates imply that a 50% reduction in exposure to immigration is associated with a delay in

pandemic arrival of 10.4 days (95% con�dence interval 7.50–13.3 days), and a 90% reduction is

associated with a delay of 34.5 days (95% c.i. 24.9–44.1 days). A 50% reduction in incoming trips

per capita is associated with a delay in pandemic arrival of 11.8 days (95% c.i. 9.19–14.4 days),

while a 90% reduction is associated with a delay of 39.1 days (95% c.i. 30.5–47.7 days).22 The

22The general magnitude of these estimates is robust to separating the analysis by hemisphere to account for the
inherent seasonality of in�uenza spread. These results are presented in the Appendix.
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Table 1: Influenza 2009: International mobility and the timing of pandemic arrival

Dep. var.: Day of pandemic arrival
Mobility measure: ln Immigrants ln Incoming trips

Connectivity weights? No Yes No Yes
est. s.e. est. s.e. est. s.e. est. s.e.

Linear OLS
ln Mobility −11.0 (1.66) −15.0 (2.13) −16.8 (2.04) −17.0 (1.91)
# 184 184 184 184
'2 0.102 0.206 0.226 0.297
Days of delay associated with mobility reduction
50% reduction 7.62 (1.15) 10.4 (1.48) 11.7 (1.41) 11.8 (1.33)
90% reduction 25.3 (3.83) 34.5 (4.90) 38.8 (4.69) 39.1 (4.40)

Survival regression: Loglogistic accelerated failure time
ln Mobility −0.120 (0.0140) −0.149 (0.0180) −0.158 (0.0134) −0.159 (0.0123)
W 0.258 (0.0166) 0.235 (0.0153) 0.233 (0.0153) 0.213 (0.0145)
# 184 184 184 184
Days of delay associated with mobility reduction
50% reduction 7.83 (0.951) 9.87 (1.25) 10.5 (0.937) 10.5 (0.861)
90% reduction 28.7 (3.83) 37.1 (5.28) 39.8 (4.01) 39.9 (3.69)

Observations are countries. Robust standard errors in parentheses to the right of each coe�cient estimate. Constant term included
but not shown. In the loglogistic survival regressions, W is the scale parameter such that the survivor function is ( (C ) ≡ (1 +
(_C )1/W )−1 and _8 ≡ 4−V ·ln(mobility) . ‘Immigrants’ is the average annual number of immigrants to each country during 2005–2010.
‘Incoming trips’ is the number of people arriving in each country, for any duration of stay, in 2008.

broad magnitudes of these results are consistent with the simulation in Figure 1b.

These estimates measure the relationship between overall exposure to international mobility

during the interpandemic period and the arrival of a novel pandemic. They need not re�ect

the correlation with emergency changes to immigration or travel during the pandemic. How-

ever, their magnitude closely matches simulation-based estimates of the relationship between

emergency travel restrictions and pandemic arrival using a calibrated global epidemiological-

demographic-mobility model. Bajardi et al. (2011) simulate that emergency 50% cuts to incoming

travel from Mexico at the start of the 2009 pandemic would have delayed pandemic arrival by

only 4–9 days relative to no restrictions, and 90% cuts by 15–21 days.23

The assumption of a linear relationship in the top panel of Table 1 is restrictive. The bottom

23This overall delay sums the Bajardi et al. (2011) estimates for the change from 0% to 40% restriction—three days—
and the simulated e�ects of further restrictions to 50% or 90% in their Figure 4. Tizzoni et al. (2012, 12) identically
estimate an expected 20-day arrival delay from eliminating 90% of international travel from Mexico.
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panel uses survival analysis to describe the same relationship with the loglogistic accelerated

failure time model. This allows the hazard rate for arrival in a new country to vary over time,

�rst rising then falling. The estimated changes in arrival time associated with a 50 or 90 percent

reduction in exposure to international mobility are statistically indistinguishable from the values

estimated in the linear speci�cation.

We are not aware of systematic country-level data on exposure to international migration or

travel before 1960. We thus do not carry out a similar exercise exploiting cross-country di�er-

ences in mobility for the pandemics of 1957, 1918, and 1889. We can, however, study the earlier

pandemics using a di�erent source of variation in exposure to international mobility: over time.

4.2 Differences in mobility over time: Pandemic spread from 1889 to 2020

By any measure, the amount and ease of international mobility has risen drastically over the past

130 years. Since 1910 alone, the global population of international migrants has risen by a factor

of more than six, after accounting for changes in country borders.24 In the United States since

1910, the number of overseas passenger arrivals rose by a factor of more than 77.25 Global tourist

arrivals rose from 25 million in 1950 (UNWTO 2018) to 1.5 billion in 2019 (UNWTO 2020b), a

sixtyfold increase, while world population rose by a factor of only 3.1. From 1889 to 1997, the

real cost of global freight transportation fell 94% (Shah Mohammed and Williamson 2004, 188).

Since 1957 alone, the real cost of air transport per ton/kilometer has fallen by 90% (Hummels

2007).

24Between 1910 and 2019, the number of people living outside their country of birth or nationality rose from around
36 million to 272 million (McKeown 2004, 184; IOM 2020). This change does not account for the rise in the number of
countries in the world since 1910. In the original source, Ferenczi (1937, 28) counted aliens resident in 97 countries in
1910, and by 2019 there were 193 member states in the United Nations. However, by 1930, Ferenczi’s count includes
aliens in 166 countries, and his estimate of total migrant population fell to 29 million, suggesting that even a large
change in the number of countries did not have �rst-order e�ects on the measured migrant population. The events
since 1930 that have added the most to the international migrant population without human mobility are the breakup
of the Soviet Union and the partition of South Asia, which at the time they occurred added (respectively) about 30
million and about 8 million to the international migrant population UNDESA (2004, vii, 23). This suggests that even
an estimate of global migrant population in 1910 fully adjusted for changes of borders since 1910 would be of a similar
order of magnitude to that shown. An increase by a factor of six would be conservative.

25The number of passenger arrivals at US seaports in 1910 was 1.328 million (Source, p. 119). This excludes “travel
over international land borders, crewmen, military personnel, and travelers between the United States and its outlying
areas”. In 2015, the number of air passenger arrivals from foreign countries was 102.3 million (Source), likewise
excluding arrivals by land. Both numbers include both US citizens and foreign citizens. The ratio of these two
numbers underestimates the rise because the 2015 number does not include arrivals by sea.
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Figure 4: Five Pandemics: The rate of international spread to populations, 1889–2020

1918 in!uenza, fall wave

2009 in!uenza

1889 in!uenza, lower bound

1957 in!uenza

2019 coronavirus

0.0

0.5

1.0

Fr
ac

tio
n 

of
 w

or
ld

 p
op

ul
at

io
n 

in
 a"

ec
te

d 
co

un
tri

es
, o

ut
sid

e o
rig

in
 co

un
try

0 6 12
Months since start of international spread

Populations are the number of people within the area covered by each country with borders held constant as they stood on
June 1, 1991. The country of origin for each pandemic is omitted, as the goal is to compare rates of international spread.
Dates for in�uenza 2009 and covid-19 are daily. Dates for in�uenza 1889, 1918, and 1957 are unbiased estimates of start day
binned by calendar month disregarding day-of-month, because day-of-month was not recorded for some countries. Thus, for
all calendar months after the calendar month of �rst international spread, arrival dates for 1889, 1918, and 1957 are binned at
the 15th of the month. Arrival dates within the �rst month of international spread are binned at the expected day-of-month
conditional on that day being after the �rst day of spread. For example, in 1889, day zero of international spread is November
17, 1889, the �rst date the virus is recorded outside its origin country (the Russian Empire), in France. The virus arrived in
both Belgium and Libya in December, and both are binned at December 15th since the day-of-month is known for Belgium
(the 13th) but unknown for Libya. The day of arrival for Austria is known to be in November (the 30th), the same month
as the start, and known to be after the �rst date of November 17th. Thus Austria is binned at November 24th—an unbiased
estimate of the date if only the month were known but it were known to have followed France.

How would this a�ect the timing of international pandemic spread? The estimates in Table 1 can

provide a naïve benchmark. If the correlations in the table re�ect causal relationships, they imply

that in a world with an order of magnitude less mobility, the arrival of a pandemic biologically

identical to the 2009 in�uenza pandemic would have been delayed in the average country by one

or two months.
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We can compare that benchmark to the actual rate of international spread in the three earlier

pandemics. Figure 4 carries out this exercise. The vertical axis shows the fraction of the world

population living in countries reached by each pandemic as it progressed, holding international

borders constant at their location in mid-1991. The horizontal axis is the number of days since

the start of international spread—day zero is the �rst day the virus is reported outside its country

of origin. For the historical pandemics of 1957, 1918, and 1889, the number of days is binned by

month to account for the fact that arrival is reported by month only for some countries. For

reference, the �gure displays the same curve for the 2019 coronavirus pandemic.26

Consider the arrival delay for the country of the median person on earth living outside the

country where each pandemic began. This is the intersection of each curve with the horizontal

line in the �gure, at 0.5. For the 1918 and 2009 in�uenza pandemics, by 2–3 weeks after the

start of international spread, the median person living outside the country of pandemic origin

was already living in a country reached by the virus. For the 2019 coronavirus pandemic, this

occurred �ve weeks after the start of international spread. For the 1957 in�uenza pandemic

it was six weeks, and for the 1889 in�uenza pandemic, less than eight weeks. For the median

person, the delay until international spread brought the pandemic to their country varied by only

six weeks even as international migration and travel exploded across 130 years of technological

change.

Figure 5 presents the same data, showing the geographic extent of international spread rather

than the population coverage of international spread. The country of origin of each pandemic is

shown in black.27 International borders are again �xed at their location in mid-1991. The elapsed

time again takes day zero as the �rst day the virus is reported outside the country of origin.

Again the 2019 coronavirus pandemic is juxtaposed for reference (Figure 5e). It is apparent from

the four in�uenza pandemics that once international spread began, the virus had in each case

26The curve for 1889 is marked as a lower bound because the arrival date is unknown for a substantial number of
countries; the true curve thus lies strictly above the one shown.

27For the pandemics of 2009 and 1957 the country of origin is uncontroversial. For the pandemic of 1918, we adopt
the interpretation of Patterson and Pyle (1991, 5, 8) that the spring wave began in the United States on or around
March 5 and the fall wave began in Brest, France, close to August 22, though particularly the spring-wave origin
location and precise timing are contested (e.g. Langford 2005; Erkoreka 2009). For the pandemic of 1889, while there
were reports of potentially earlier and related �u outbreaks in Greenland and Athabasca (northern Alberta, Canada),
the consensus in the literature is that the most reliable report of the pandemic’s origin comes from Bukhara, Russian
Empire (now Uzbekistan) in the �rst week of June 1889 (that is, the second half of May 1889 by the ‘old-style’ calendar
still used at the time in the Russian Empire (Parsons 1891b, 14).
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circled the globe within four months. In 1889 and 1957, with the caveat of data limitations for

1889, notably fewer countries were reached within two months than in the other pandemics.

Here again, as international mobility rose by an order of magnitude, the speed of international

spread appears to shift on the order of one or two months.

This evidence would corroborate a causal interpretation of the estimates in Table 1 if the biolog-

ical traits of the viruses in each in�uenza pandemic were identical. They are not identical. But

they are similar. First, the four pandemics are believed to have been caused by only one type (A)

and two subtypes (H1N1 and H2N2) of in�uenza virus. The pandemics of 1918 and 2009 were

both caused by subtype H1N1, while the pandemics of 1889 and 1957 were probably both caused

by subtype H2N2 (Hilleman 2002; Monto and Fukuda 2020).28 In nature there are four types, and

type A alone has 131 known subtypes (Fukuyama et al. 2020). Other types (especially B) and sub-

types (especially A/H3N2 and A/H5N1) have been important in other episodes of international

in�uenza spread (Biggersta� et al. 2014).

This biological similarity among the pandemics is re�ected in their observed transmissibility.

The basic reproduction number R0 lies in a relatively narrow range for all four pandemics: For

the 2009 pandemic, it has been estimated at 1.2–2.3 (Boëlle et al. 2011) and 1.3–1.7 (Biggersta�

et al. 2014). For the 1957 pandemic estimates are in the range 1.5–1.7, and for 1918 in the range

1.5–2.3 (Biggersta� et al. 2014). The two extant studies of the 1889 pandemic �nd R0 of 1.3–1.5

(Ramiro et al. 2018) and 1.9–2.4 (Valleron et al. 2010). That is, the inherent transmissibility of the

2009 virus was only “slightly smaller” than in the prior three in�uenza pandemics (Boëlle et al.

2011).

Controlling for this minor di�erence, Figure 4 suggests, would leave the above result qualita-

tively unchanged. Had the inherent transmissibility of the 2009 virus not been slightly smaller

than in the prior pandemics, the median person’s country might have been reached by roughly

two weeks after the start of international spread, rather than three. In that case, the curve for

2009 would overlap with the curve for 1918, and for the median person, arrival time for all four

28No tissue samples from the 1889 pandemic survive to genetically test the hypothesis of a common subtype in the
1957 and 1889 pandemics, but exposure to the 1889 pandemic generated immune response against the 1957 pandemic
(Mulder and Masurel 1958). The evidence in the literature does admit the possibility that the 1889 pandemic was
caused by in�uenza A subtype H3N8 (e.g. Biggersta� et al. 2014). Vijgen et al. (2005, 1603) even �nd it “tempting to
speculate” that the 1889 virus was in fact a zoonotic coronavirus.
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Figure 5: Five Pandemics: The rate of international spread to territories, 1889–2020

(a) 1889 in�uenza

(b) 1918 in�uenza, fall wave

(c) 1957 in�uenza

Continued on next page
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Figure 5: Continued, Five Pandemics: The rate of international spread to territories, 1889–2020

(d) 2009 in�uenza

(e) 2019 coronavirus disease

International borders are �xed at their location on June 1, 1991 (Weidmann et al. 2010). Time zero represents the start of international
transmission, the �rst local transmission of the virus in a country outside the country of origin. “62 months” de�ned as the virus
reported present within the territory covered by 1991 borders between 0 and 67 days in expectation (inclusive) after the beginning
of international spread (the date �rst reported outside the country of origin). “3–4 months” de�ned as 68 to 128 days (inclusive)
after. “>5 months” de�ned as 129 days or more.

27



in�uenza pandemics would still fall within a six-week window. The e�ect of an order of magni-

tude increase in global human mobility between the pandemics would still have an a�ect on the

speed of international spread of roughly the same magnitude that would be predicted by a naïve

extrapolation from the estimates of Table 1.29

Collectively, this evidence is consistent with Prediction 1: Reductions in exposure to interna-

tional mobility delay pandemic arrival, but even drastic reductions delay arrival by weeks at

most. Tognotti (2013, 257) states that the 1918 pandemic spread so quickly because “travel re-

strictions” and “border controls . . .were impractical, during a time when the movement of troops

was facilitating the spread of the virus.” But the evidence here indicates that any such e�ect was

minimal: In the other pandemics where troop movements were not a major contributor, for the

median person on earth, country-to-country spread was only slowed by a few weeks.

5 Arrival delay and final size

Having found a small, negative correlation between exposure to pre-pandemic international mo-

bility and the arrival date, we now proceed to test for a relationship between arrival date and

the overall harm of the pandemic. From Prediction 2, we expect no correlation between each

pandemic’s arrival date and its �nal size in each country.

These tests will be indirectly informative about the relationship between international mobility

and �nal size. If we cannot detect a positive relationship between earlier arrival and larger �nal

size, then if greater international mobility does increase �nal size, it would have to do so by a

mechanism that does not also accelerate the arrival of the pandemic. It is not obvious what such

a mechanism would be. On the other hand, a clear positive relationship between early arrival

and greater harm would leave open the possibility of a positive e�ect of mobility on �nal size.

Such an indirect test is feasible for all four in�uenza pandemics. We begin with the most recent

one.

29In the limiting case, a more transmissible variant of the 2009 virus could not have reached the median person’s
country in less than a day, and even then the arrival delay for the median person would only have varied by less than
eight weeks across all �ve pandemics.
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Figure 6: Influenza 2009: Date of pandemic arrival versus �nal mortality

(a) Mortality from
Simonsen et al. (2013)
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Solid line shows OLS �t surrounded by 95% con�dence interval of the predicted mean, in gray. Dashed line
shows nonparametric Nadaraya-Watson (1964) regression, Epanechnikov kernel, bandwidth 60 days. Country
labels are ISO-3166 U3 codes.

5.1 Influenza 2009

Figure 6 shows the simple relationship between arrival date and �nal mortality for the 2009

in�uenza pandemic. The bivariate relationship is strong and positive, using both measures of

mortality. Table 2a shows the corresponding linear regressions, and shows the e�ects of drop-

ping the countries for which Simonsen et al. impute mortality, as well as including the same

country-level control variables used in Table 5. The estimates in columns 2–5 are statistically

indistinguishable from zero. With covariates included, the standard error on day-of-arrival is

roughly equal in magnitude to the coe�cient estimate.

Table 2b relaxes the assumption of a linear hazard rate and recasts the tests as survival regres-

sions with the loglogistic accelerated failure time model allowing a time-varying hazard. Here

again the coe�cients in columns 2–5 cannot be statistically distinguished from zero. All of the

results in Figure 6 suggest that the positive relationship seen in Figure 6 could be driven by unob-

served country heterogeneity, but o�er no evidence that anything causing later arrival (such as
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reduced exposure to mobility) was su�cient to reduce �nal mortality. This indirect test corrob-

orates the direct tests of the mobility-�nal size relationship in 2009 from Section 6. Collectively,

these results fail to reject the null of no correlation between arrival date and �nal mortality in

2009.

Beyond this, the economic importance of the coe�cient estimates in Table 2a is extremely small.

First, most of the coe�cient estimates for the relationship between delay-until-arrival and �nal

mortality are positive. Second, in the one speci�cation yielding a negative coe�cient estimate

(using the Simonsen et al. (2013) directly-reported countries), the magnitude of the statistically-

insigni�cant coe�cient is so small that the implied e�ect would be dwarfed by the e�ect of

countless other public health measures. We illustrate this by translating the relationship between

arrival time and �nal size in the table into an equivalent relationship with R0. Equation (10)

implies that R0
��
?=0 =

1
/

ln
( 1

1−/
)
, so

3R0

3/
=

1
/ (1 − / ) +

ln(1 − / )
/ 2 . (11)

Thus for example, the only negative coe�cient in Table 2a, in the third regression, implies that an

additional day’s delay in arrival is associated with a change in mortality of −0.00311 per 100,000.

Assuming an infection fatality rate of 7.6 per 100,000 infections (Riley et al. 2011), this implies

that a one-week delay in arrival time—requiring a permanent 50 percent reduction in exposure

to international mobility—is associated with a change in �nal size of −0.00286. By equation (11),

this is the same change in �nal size that would be generated by a change in R0 of 0.00144.

Such an e�ect on R0 can be achieved at far less economic cost than the cost of a permanent

50 percent reduction in international mobility during the interpandemic period. Regulations on

economic activity inside a country’s borders, after a pandemic hits, can have multiple orders of

magnitude higher impact. For example, domestic public health interventions during the 1918

pandemic in the United States (such as mask mandates, school/church closures, and case isola-

tion) typically reduced R0 by 0.6–0.8 (Bootsma and Ferguson 2007).
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Table 2: In�uenza 2009: Start date versus �nal mortality

(a) Linear OLS
Dep. var.: ln Final mortality per 100,000

Mortality measure: Simonsen et al. (2013) Excess ILI mortality, 15–49
Directly reported? No Yes

est. s.e. est. s.e. est. s.e. est. s.e. est. s.e.
Day of arrival 0.00266 (0.000523) 0.00814 (0.0106) −0.00311 (0.0122) 0.0111 (0.00481) 0.00845 (0.00478)
ln GDP/cap., PPP −0.111 (0.634) 0.487 (0.493)
Urbanization 1.91 (1.57) 0.900 (1.26)
Healthcare access −0.0442 (0.0237) −0.0662 (0.0206)
Health exp./GDP 0.0148 (0.0872) 0.0527 (0.0815)
# 162 25 25 64 62
'2 0.0941 0.0242 0.424 0.0816 0.273

(b) Survival regression: Accelerated failure time, loglogistic

Dep. var.: Day of arrival
Mortality measure: Simonsen et al. (2013) Excess ILI mortality, 15–49
Directly reported? No Yes

est. s.e. est. s.e. est. s.e. est. s.e. est. s.e.
Mortality 0.328 (0.0625) 0.0486 (0.0595) −0.0281 (0.0365) 0.0982 (0.0400) 0.0610 (0.0401)
ln GDP/cap., PPP 0.403 (0.129) −0.0495 (0.0932)
Urbanization −1.13 (0.433) −0.490 (0.361)
Healthcare access −0.0188 (0.00452) 0.00258 (0.00502)
Health exp./GDP −0.0434 (0.00851) −0.047 (0.0201)
W 0.284 (0.0181) 0.154 (0.0283) −0.0188 (0.00452) 0.207 (0.0215) 0.00258 (0.00502)
# 162 25 25 64 62

Robust standard errors in parentheses to the right of each coe�cient estimate. Constant term included but not shown. “Healthcare access” is the Healthcare Access and Quality Index (Barber
et al. 2017) for 2010, a 1–100 principal-component score derived from mortality outcomes adjusted for cause-speci�c risk, where 100 represents the lowest mortality. ‘ILI’ is in�uenza-like
illness. ‘Directly reported’ countries from Simonsen et al. (2013) do not include Mexico, the pandemic-origin country. In the loglogistic survival regressions, W is the scale parameter such
that the survivor function is ( (C ) ≡ (1 + (_C )1/W )−1 and _8 ≡ 4−V ·ln(mobility) .
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Figure 7: Influenza 1957: Date of pandemic arrival versus �nal mortality
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Solid line shows OLS �t surrounded by 95% con�dence interval of the predicted mean, in gray. Dashed line shows non-
parametric Nadaraya-Watson (1964) regression, Epanechnikov kernel, bandwidth 60 days. Final mortality estimates
from Viboud et al. (2016), excluding incommensurable estimates for subsets of countries. Figure for Ireland includes
Northern Ireland.

5.2 Influenza 1957

The so-called ‘Asian �u’ pandemic of 1957 began in the Kweichow province of Southern China,

now Guizhou, in February (Cox and Subbarao 2000, 413), spreading quickly around the world

via Hong Kong and Singapore. We perform a corresponding test of Prediction 2 in the 1957

pandemic for the 35 countries where �nal mortality has been estimated by Viboud et al. (2016)

at the national level.

Figure 7 shows the bivariate relationship between arrival date and �nal mortality across coun-

tries for the 1957 pandemic. The relationship is indistinguishable from zero, in the linear re-

gression (solid line) and across the distribution of observed start dates in the nonparametric

regression (dashed line). The corresponding linear regression estimates are shown in Table 3a,

where the standard error is twice as large as the coe�cient estimate. This conclusion is un-

changed whether the relevant mortality rate is taken as mortality in 1957 only (column 1) or in

1957–1959 total (column 3).
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As in 2009, these bivariate correlations could be confounded by unobserved country traits that

mediate between �nal size as measured by infections and �nal mortality. It is possible that

countries where the virus arrived early happened to be those best able to prevent infection from

resulting in death, due to their greater wealth and/or stronger health systems. The table therefore

includes in columns 2 and 4 the most basic controls available for this time period to capture the

level of development (GDP per capita) and health conditions (the child mortality rate). If the

omission of such traits were confounding a strong negative, partial correlation in columns 1 and

3, we would expect the coe�cient on arrival date to become more negative when these controls

are included. The opposite occurs.30

We conclude that in 1957 as well, no country trait causing later arrival of the pandemic (such

as unobserved reduced exposure to international mobility) was su�cient to cause statistically

signi�cant reductions in �nal mortality. The economic magnitude of the coe�cient estimates is

likewise extremely small. Following again equation (11), the coe�cient estimate of −0.000654

from Table 3a, column 2, implies that a seven-day delay in the 1957 pandemic arrival, assuming

an infection mortality rate of 7.6 per 100,000, would correspond to a reduction in R0 of 0.000302

(from this pandemic’s base value of 1.5–1.7 estimated by Biggersta� et al. (2014)).

5.3 Influenza 1918, fall wave and overall

The fall wave of the 1918 pandemic most likely began in Brest, France close to August 22.31 From

there it spread very rapidly to the rest of the world via England, Boston, and Sierra Leone. We test

Prediction 2 in the 1918 pandemic for the 45 countries where fall-wave �nal mortality has been

estimated by Patterson and Pyle (1991, 14). Figure 8a shows the bivariate relationship between

arrival day and �nal mortality in each country. In the linear and nonparametric regressions, the

relationship cannot be distinguished from zero. A case in point is Mauritius, which managed to

delay the arrival by eight months, but su�ered high mortality nonetheless.

The genetic makeup of the fall-wave virus was di�erent enough from the spring-wave virus to

30A further robustness check, dropping the linear hazard assumption in favor of survival analysis with the loglo-
gistic accelerated failure time model, likewise gives a null results and is presented in the Appendix.

31“The �rst reports were from Brest, a major Atlantic port and landing point for American troops, on 22 August”
Patterson and Pyle (1991, 8).
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Table 3: Influenza 1957, 1918, and 1889: Start date versus �nal mortality

(a) In�uenza 1957, countries: OLS
Dep. var.: ln Final mortality per 100,000

Mortality measure: 1957 only 1957–1959
Date of arrival −0.0428 −0.000654 −0.0526 −0.0398

(0.100) (0.0782) (0.0987) (0.0892)
ln GDP/cap., PPP −0.267 −0.689

(0.299) (0.418)
Child mortality 0.00967 −0.0034

(0.00296) (0.00619)
# 34 34 35 35
'2 0.00473 0.433 0.00887 0.139

(b) In�uenza 1918, countries: OLS
Dep. var.: ln Final mortality per 100,000

Wave: Fall 1918 only Spring/Fall 1918
Date of arrival 0.00226 0.00210 0.00520 0.00227

(0.00348) (0.00236) (0.00142) (0.00153)
ln GDP/cap., PPP −0.516 −0.402

(0.162) (0.200)
Child mortality 0.00307 0.00232

(0.00114) (0.00135)
# 45 40 50 45
'2 0.00822 0.643 0.147 0.488

(c) In�uenza 1889, cities: OLS

Dep. var.: ln Final mortality
per 100,000

Date used: Date of
arrival

Peak
mortality

Date 0.00757 −0.00383
(0.00991) (0.00705)

# 34 87
'2 0.0615 0.00487

Robust standard errors in parentheses underneath each coe�cient estimate. Constant term included but not shown. Covariates are
predetermined (GDP per capita and child mortality are measured at 1956 for the 1957 pandemic, and at 1917 for the 1918 pandemic).
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Figure 8: Influenza 1918: Date of pandemic arrival versus �nal mortality

(a) Fall 1918 wave arrival and mortality only
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(b) Spring and fall 1918 waves combined
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Solid line shows OLS �t surrounded by 95% con�dence interval of the predicted mean, in gray. Dashed line
shows nonparametric Nadaraya-Watson (1964) regression, Epanechnikov kernel, bandwidth 60 days. Countries
where only month is known are imputed as the 15th of that month. In Figure 8a, mortality and start date are
from the fall wave only. In Figure 8b, the start date is the �rst date that the pandemic arrived, regardless of
whether that occurred in the spring or fall wave, and mortality is combined mortality from both waves.
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cause far higher mortality (e.g. Sheng et al. 2011; Short et al. 2018), while similar enough that

spring-wave infection conferred substantial immunity against fall-wave infection (Simonsen et

al. 2018). It is therefore unclear whether the fall wave is properly considered to be a separate

pandemic event. We test the robustness of the �ndings to relaxing that assumption.

There is likewise no sign of a negative bivariate relationship between arrival date and �nal mor-

tality if we consider the pandemic of 1918 as a whole, combining the spring and fall waves in

Figure 8b. Here, the start date is the �rst day that either the spring or fall waves reached the

country, whichever was earlier, and the mortality �gure combines spring- and fall-wave mortal-

ity. The sample expands by �ve countries for which a mortality estimate exists for all of 1918

but not for the fall wave speci�cally. There is a marked positive bivariate relationship between

start date and �nal mortality: Countries that managed to escape the virus longer su�ered much

higher mortality.

The corresponding linear regression coe�cient estimates are shown in Table 3b, in columns

1 and 3. These bivariate relationships, as above, could be confounded by unobserved country

traits mediating between infection and mortality: For example, income per capita is known to

explain almost half the cross-country variance in 1918 in�uenza mortality (Murray et al. 2006).

Both of the prior estimates become statistically indistinguishable from zero with the addition of

controls for the overall level of development (GDP per capita) and public health conditions (child

mortality) in columns 2 and 4. The coe�cient on arrival date in the fall-wave regression does not

substantially change with the addition of these controls (column 2), suggesting that the bivariate

correlation is not substantially confounded by the omission of the the most basic country traits

that might mediate between the infection rate and resulting mortality. The coe�cient on arrival

date falls by half with the addition of these controls when the spring and fall waves are combined

(column 4), but remains positive.

Again, we conclude that no country trait causing later arrival of the pandemic (such as unob-

served reduced exposure to international mobility) was su�cient to cause detectable reductions

in �nal mortality.
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5.4 Influenza 1889, first wave

The ‘Russian �u’ of 1889 was �rst reliably reported in Bukhara, Russian Empire (now Uzbekistan)

in June. From there is spread, via Warsaw and Saint Petersburg, rapidly around the world. We test

Prediction 2 using the city-level �nal mortality �gures from Valleron et al. (2010). They estimate

�nal mortality for cities across Europe and North America, by comparing excess weekly all-cause

mortality during the window October 4, 1889 to March 28, 1890 to the mortality during the �rst

four weeks that each city is under observation. They include only large cities with anomalous

mortality.32

We consider only mortality in the �rst wave of the pandemic, because �nal mortality rates for

the subsequent waves have not be systematically estimated. This requires stopping the analysis

in mid-February 1890, when the second wave began (Parsons 1891a, 307), since the Valleron et

al. data only cover the �rst few weeks of that wave.33 Precise dates of pandemic arrival are only

available for 34 of these cities (in Parsons 1891b and other sources discussed in the Appendix).

As an alternative with more complete coverage, Valleron et al. recommend using the date of

peak excess mortality as an indicator of relative timing. That is available for 87 cities meeting

the above criteria.

Figure 9a shows the bivariate relationship between �nal mortality for the 34 cities where reliable

dates of arrival are available (by day). In the country-level analysis of later pandemics above,

we omitted the country of pandemic origin; in the city-level analysis here, we omit the city of

pandemic origin (Bukhara, Russan Empire, now Uzbekistan). There is no relationship between

�nal mortality and the arrival date, in the linear or nonparametric regression lines. Figure 9b

32Out of 172 cities with available mortality series, the source includes “the 96 cities with populations exceeding
35,000 inhabitants and a unique mortality peak during the period” (Valleron et al. 2010, 8789)

33To do otherwise, using the �nal six weeks of data collected by Valleron et al. (2010) for the initial period of
the second wave would, could, for the present purpose, bias the results. For example, the city of She�eld, England
exhibited a relatively small local peak in excess deaths of 99 per 100,000 at the beginning of the second wave, just
before the end of the window of observation in mid-March 1890. Including this initial period of the second wave would
make She�eld appear to exemplify a city where delayed arrival was associated with limited mortality. But this was
just the beginning of the next wave, the second of several waves continuing through 1894 (Smith 1995). And in 1891,
She�eld su�ered the highest in�uenza mortality rate seen in England during the entire pandemic (Parsons 1893,
27). Including this datum would suggest the opposite conclusion, that She�eld was a city where delayed arrival was
associated with very high mortality. Correct analysis requires considering either the entirety of subsequent waves or
none of them. Unlike in the case of the 1957–1959 pandemic waves, no systematic mortality data for the second or
subsequent waves of the 1889–1894 pandemic have been collected.
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Figure 9: Influenza 1889: Date of pandemic arrival versus �nal mortality, �rst wave

(a) By date of arrival
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Observations are cities. Excess mortality in each week is de�ned, as in Valleron et al. (2010), as all-cause all-age mortality
in each week relative to baseline average mortality in the �rst four weeks each city is under observation (starting the week
of October 4, 1889). Solid line shows OLS �t surrounded by 95% con�dence interval of the predicted mean, in gray. Dashed
line shows nonparametric Nadaraya-Watson (1964) regression, Epanechnikov kernel, bandwidth three weeks. Shows 1889
wave only, cut o� at peak-date February 15, 1890 because the 1890 wave began in late February (Parsons 1891a, 307) and no
�nal-mortality estimates are available for that wave. The origin of the pandemic is very likely to have been in Bukhara (now
Uzbekistan) around the �rst week of June 1889 (that is, the second half of May 1889 by the ‘old-style’ calendar still used at
the time in the Russian Empire (Parsons 1891b, 14))
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shows the relationship between �nal mortality and the peak mortality date (by week). Again,

no statistical relationship is discernible. The corresponding linear OLS regressions are shown in

Table 3c. The standard errors in those regressions are comparable to or much larger than the

coe�cient estimates.

It is not possible for the 1889 pandemic to add control variables corresponding those used in

the later pandemics (income per capita and indicators of health technology) because city-level

indicators of that kind for this historical period do not exist. We note, however, that the plausible

confounding e�ect of such unobserved traits diminishes as the geographic scope of the sample

is reduced and the time period in question becomes earlier. For example, the 1957 analysis above

includes Egypt, Sri Lanka, and Colombia alongside Western Europe and the United States. But

these 1889 regressions include exclusively cities in relatively rich parts of Europe alongside a few

in the United States, where the plausible cross-site variance in unobserved wealth and health

system capability is relatively limited. Moreover, advances in health technology by 1957 made

it possible for some countries to pull away from others, but we are not aware of very large

di�erences in treatments used for in�uenza patients across rich European and U.S. cities in 1889.

This diminishes, but need not strictly eliminate, the potential role of such traits as unobserved

confounders.

We conclude that in the �rst wave of the 1889 pandemic, also, no country trait causing later

arrival of the pandemic (such as unobserved reduced exposure to international mobility) was

su�cient to cause detectable reductions in �nal mortality. In none of the four pandemics do we

�nd evidence to reject Prediction 2.

6 International mobility and final size

Putting together the results of the previous two sections, we detect a small negative e�ect of

exposure to international mobility on time-to-arrival of the four historical pandemics, and fail

to detect any relationship between time-to-arrival and mortality. This implies that if exposure

to international mobility does increase mortality, it does so by a mechanism that does not also

accelerate the arrival of the pandemic. Because few such mechanisms are obvious, this lends
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indirect support to Prediction 3: no relationship between exposure to international mobility and

�nal size.

For the 2009 pandemic alone, we can test this prediction more directly. In that year we have

measures of country-level exposure to international mobility. Prediction 3 implies the null hy-

pothesis of zero correlation between each country’s exposure to international mobility and the

fraction of the population eventually infected. We do not directly observe the fraction infected,

but rather mortality. For the 2009 pandemic, we can test the relationship between exposure to

international mobility and pandemic mortality, conditional on key factors that causally mediate

between infection and mortality.

Figure 10 shows the simple cross-country correlation between exposure to international mobility

and the mortality rate from the 2009 in�uenza pandemic. Figure 10a shows the relationship to im-

migrants per capita using the mortality estimates of Simonsen et al. (2013), while Figure 10b uses

our independent estimates of excess prime-age mortality due to in�uenza-like illness in 2009–

2010. Figure 10c and Figure 10d repeat the exercise for arrivals of international passengers per

capita. In each �gure the solid line shows a linear OLS �t surrounded by a 95 percent con�dence

interval on the predicted mean, while the dashed line shows a nonparametric Nadaraya-Watson

(1964) regression that is robust to in�uential observations. There is no sign of a generalized pos-

itive relationship between exposure to mobility and pandemic mortality. If anything, the simple

bivariate correlation is negative.

Table 4 shows the corresponding regression estimates. It carries out several robustness checks by

presenting the results with international mobility measured as migration or travel, with mortal-

ity measured by Simonsen et al. or by excess deaths from in�uenza-like illness, with or without

weighting countries by connectivity, with or without the countries whose mortality is imputed

by Simonsen et al., and using nonparametric Spearman rank correlations rather than linear re-

gression. The coe�cient estimates remain negative in all of these permutations. The coe�cient

using the Simonsen et al. data is more negative when the countries without directly reported

mortality data are omitted, and when our own excess mortality estimates are used.

The connectivity-weighted coe�cient estimates imply that a 50% reduction in exposure to either
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Figure 10: Influenza 2009: International mobility and pandemic �nal size

(a) Immigration: Mortality from Simonsen et al.
(2013)

BFACAFCOM
GNQ

ERI
GMB

GHA

GNB LBR

SLE

TGO

TKM
UZB

ABW
BWA

GRDGUY

KAZ

MDV
ZMB

BTN
TLS

IDN

LBY

MLT

PAKTZA

AFG

ALB

DZA
AGO

ARG

ARM

AUS

AUT

AZE

BHS

BHR

BGD
BRB

BLR

BEL

BLZ
BEN

BOL

BIH

BRA

BRN

BGR

BDI

KHM

CMR CAN

CPV

TCD

CHL
CHN

COL CRICIV

HRV

CUB

CYP

CZE

COD

DNK

DJI

DOMECU

EGY

SLV

EST

ETH

FJI

FIN

FRA

PYF
GAB

GEO

DEU

GRC

GUM

GTM

GIN

HTI
HND

HKG

HUN

ISL

IND

IRN

IRQ

IRL
ISR

ITA

JAM

JPN JOR
KEN

KWTKGZLAO

LVA

LBN
LSO

LTU

LUX

MAC

MKD

MDG
MWI

MYS

MLIMRT

MUSFSM MDAMNG

MNE

MAR
MOZ

MMR

NAM

NPL

NLD

NCL

NZL

NICNER
NGA

PRK

NOR

OMN

PSE

PAN

PNG

PRYPER

PHL

POL

PRT

PRI

QAT

COG

ROU RUS

RWA
LCA

VCT

WSM

STP

SAU

SEN

SRB

SGP

SVK

SVN

SLB

SOM
ZAF

KOR ESP

LKA

SDN

SUR

SWZ

SWE
CHE

SYR
TJK

THA

TON

TTO

TUN

TUR

VIR
UGA

UKR ARE

GBR

USA

URY

VUT

VEN

VNM

YEMZWE

0.2

1

10

Re
sp

ira
to

ry
 m

or
ta

lit
y 

pe
r 1

00
,00

0 p
op

., l
og

 sc
al

e

0.0001 0.001 0.01 0.1

Immigration per capita, 2005–2010, log scale

(b) Immigration: Excess mortality from
in�uenza-like illness 2009–2010, age 15–49
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(c) Incoming trips: Mortality from Simonsen et
al. (2013)
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(d) Incoming trips: Excess mortality from
in�uenza-like illness 2009–2010, age 15–49
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Solid line shows OLS �t surrounded by 95% con�dence interval of the predicted mean, in gray. Dashed line shows
nonparametric Nadaraya-Watson (1964) regression, Epanechnikov kernel, bandwidth 1.5 natural log points (0.651 log10
points). Immigration is the average annual in�ow of immigrants per resident during the period 2005–2010. ‘Incoming
trips’ is the number of people arriving in each country, for any duration of stay, per resident in 2008.
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immigration or international travel is associated with an increase in the mortality rate of 0.277–

0.325 per 100,000 used by Simonsen et al., which captures all deaths due to any respiratory

condition and all ages, with a mean of 2.59. The same reduction in exposure to international

mobility is associated with an increase of 0.120–0.137 in our measure of excess deaths per 100,000,

which captures only prime-age (15–49) deaths due to in�uenza-like illness, with a mean of 0.633.

These results imply that countries more exposed to international mobility had systematically

lower mortality rates in the 2009 pandemic. But this �nding need not reject the null result pre-

dicted by Prediction 3, because the correlation might not estimate a strictly causal relationship.

Most notably, countries with a less exposure to international mobility might be those with less

wealth, higher pre-existing morbidity, and less access to advanced medical technology that could

a�ect pandemic mortality conditional on infection (e.g. Morales et al. 2017). And international

mobility by itself can cause changes in national wealth and technology (Kerr 2008; Bahar and

Rapoport 2018).

We thus repeat the above regressions controlling for a set of country traits in Table 5. We omit

the results using the mortality rates imputed by Simonsen et al., because their imputation model

uses some of the same covariates we include here. We control for the Healthcare Access and

Quality Index estimated by Barber et al. (2017). This is an index of the degree to which cause-

speci�c mortality rates in each country are not explained by the relative prevalence of di�erent

life-threatening health conditions in that country. That is, it measures the overall ability of the

healthcare system in each country to prevent death for a patient who presents with any given

condition that can cause death. The index is highly correlated with other measures of health

system strength, such as physicians per capita and the proportion of the population with formal

health coverage. We also control for (log) real income per capita, the fraction of the population

living in urban areas, and healthcare expenditure as a fraction of GDP. Of all the covariates, only

the Healthcare Access and Quality Index has high and robust statistical signi�cance throughout.

Each increase of one point in that 0–100 index is conditionally correlated with 0.04–0.05 fewer

all-age respiratory deaths per 100,000 (mean 2.04) and 0.05–0.06 fewer prime-age in�uenza-like

illness deaths per 100,000 (mean 0.633). The conditional coe�cient on the urbanization rate is

positive but statistically insigni�cant in most speci�cations.
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Table 4: Influenza 2009: International mobility and pandemic �nal size

Dep. var.: ln Final mortality per 100,000
Mobility measure: ln Immigration per cap. ln Arrivals per cap.

Connectivity weight: No Yes No Yes
est. s.e. est. s.e. est. s.e. est. s.e.

Mortality estimates from Simonsen et al. (2013)
ln Mobility/cap. −0.181 (0.0322) −0.171 (0.0242) −0.172 (0.0248) −0.147 (0.0198)
# 187 187 187 187
'2 0.140 0.205 0.256 0.279
Mean mortality 2.59 (0.0855) 2.59 (0.0855) 2.59 (0.0855) 2.59 (0.0855)

Change in mortality associated with mobility reduction
50% reduction 0.347 (0.0654) 0.325 (0.0488) 0.327 (0.0500) 0.277 (0.0392)
90% reduction 1.34 (0.291) 1.25 (0.213) 1.25 (0.219) 1.04 (0.165)

Spearman rank correlations
ln Mobility/cap. −0.399 (0.0674) −0.420 (0.0667) −0.547 (0.0615) −0.509 (0.0633)

Mortality estimates from Simonsen et al. (2013), directly reported countries only
ln Mobility/cap. −0.275 (0.113) −0.324 (0.117) −0.261 (0.154) −0.243 (0.0921)
# 25 25 25 25
'2 0.158 0.211 0.193 0.264
Mean mortality 2.04 (0.361) 2.04 (0.361) 2.04 (0.361) 2.04 (0.361)

Change in mortality associated with mobility reduction
50% reduction 0.429 (0.194) 0.514 (0.208) 0.405 (0.261) 0.375 (0.154)
90% reduction 1.81 (1.00) 2.26 (1.16) 1.68 (1.32) 1.53 (0.758)

Spearman rank correlations
ln Mobility/cap. −0.339 (0.196) −0.352 (0.195) −0.479 (0.183) −0.464 (0.185)

Excess mortality from in�uenza-like illness during 2009–2010, age 15–49
ln Mobility/cap. −0.174 (0.124) −0.251 (0.112) −0.259 (0.116) −0.282 (0.0891)
# 68 68 68 68
'2 0.0185 0.0452 0.0660 0.118
Mean mortality 0.633 (0.186) 0.633 (0.186) 0.633 (0.186) 0.633 (0.186)

Change in mortality associated with mobility reduction
50% reduction 0.0810 (0.0614) 0.120 (0.0586) 0.125 (0.0610) 0.137 (0.0475)
90% reduction 0.311 (0.270) 0.496 (0.292) 0.517 (0.307) 0.578 (0.249)

Spearman rank correlations
ln Mobility/cap. −0.257 (0.119) −0.232 (0.120) −0.313 (0.117) −0.393 (0.113)

Robust standard errors in parentheses to the right of each coe�cient estimate. Constant term included but not shown.
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Table 5: Influenza 2009: International mobility and pandemic �nal size, controlling for country traits

Dep. var.: ln Final mortality per 100,000
Mobility measure: ln Immigration per cap. ln Arrivals per cap.

Connectivity weights? No Yes No Yes
est. s.e. est. s.e. est. s.e. est. s.e.

Mortality estimates from Simonsen et al. (2013), directly reported countries only
ln Mobility/cap. −0.149 (0.138) −0.225 (0.123) −0.0317 (0.317) −0.116 (0.180)
ln GDP/cap., PPP 0.163 (0.487) 0.334 (0.533) −0.104 (0.769) 0.131 (0.567)
Urbanization 1.87 (0.979) 1.60 (0.986) 2.07 (1.57) 1.76 (1.29)
Healthcare access −0.0459 (0.0166) −0.0480 (0.0161) −0.0414 (0.0181) −0.0401 (0.0188)
Health exp./GDP 0.00928 (0.0798) 0.00175 (0.0794) 0.0168 (0.0674) 0.00902 (0.0738)
# 25 25 25 25
'2 0.442 0.470 0.424 0.439
Mean mortality 2.04 (0.361) 2.04 (0.361) 2.04 (0.361) 2.04 (0.361)
Change in mortality associated with mobility reduction
50% reduction 0.222 (0.217) 0.344 (0.203) 0.0454 (0.459) 0.171 (0.276)
90% reduction 0.837 (0.916) 1.38 (0.966) 0.155 (1.60) 0.627 (1.10)

Excess mortality from in�uenza-like illness (ILI) during 2009–2010, age 15–49
ln Mobility/cap. 0.0599 (0.182) −0.0265 (0.135) −0.0257 (0.187) −0.122 (0.167)
ln GDP/cap., PPP 0.267 (0.581) 0.345 (0.489) 0.357 (0.527) 0.469 (0.510)
Urbanization 0.796 (1.12) 0.689 (1.05) 0.661 (1.21) 0.292 (1.25)
Healthcare access −0.0607 (0.0206) −0.0601 (0.0212) −0.0599 (0.0213) −0.0549 (0.0230)
Health exp./GDP 0.0294 (0.0818) 0.0260 (0.0837) 0.0249 (0.0827) 0.0273 (0.0819)
# 67 67 67 67
'2 0.230 0.229 0.229 0.237
Mean mortality 0.633 (0.186) 0.633 (0.186) 0.633 (0.186) 0.633 (0.186)
Change in mortality associated with mobility reduction
50% reduction −0.0257 (0.0768) 0.0117 (0.0602) 0.0114 (0.0834) 0.0560 (0.0796)
90% reduction −0.0816 (0.232) 0.0399 (0.209) 0.0386 (0.289) 0.206 (0.322)

“Healthcare access” is the Healthcare Access and Quality Index (Barber et al. 2017) for 2010, a 1–100 principal-component score derived from mortality outcomes adjusted for cause-speci�c
risk, where 100 represents the lowest mortality. Robust standard errors in parentheses to the right of each coe�cient estimate. Constant term included but not shown.
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With these controls, the results no longer reject the null hypothesis of no correlation between

exposure to international mobility and mortality from the 2009 pandemic. In the connectivity-

weighted regressions using the mortality estimates of Simonsen et al., the coe�cients on migra-

tion or travel remain negative but with large standard errors. The partial correlation with the

Simonsen et al. mortality estimates implies that a 50% reduction in exposure to international

mobility is associated with an increase in mortality of about 0.17–0.34 per 100,000 (mean 2.04)

that is not statistically signi�cant. The partial correlation with our own mortality estimates im-

plies that the same reduction in international mobility is associated with an increase in mortality

of about 0.011–0.056 per 100,000 (mean 0.633) that is also not statistically signi�cant.34

Such partial correlations have some claim to contain information about the relationship between

international mobility and �nal size as measured by infections, since the regressions hold con-

stant some of the clearest country-level traits that could mediate between infections and mor-

tality. We do not interpret them as purely causal relationships. Rather, they imply that even

in countries with equally e�ective and well-funded health systems, and equally rich and urban

populations, very large di�erences in exposure to international mobility were not su�cient to

cause any measurable decline in �nal mortality during the pandemic of 2009. This is what we

would observe if changes in exposure to pre-existing international mobility had no e�ect on �nal

size, as theory predicts.

Collectively, these results o�er no evidence to reject the null hypothesis of no correlation be-

tween exposure to international mobility and �nal size, corroborating Prediction 3 for the 2009

pandemic. This supports the indirect corroboration of the same prediction for all four pandemics

in Sections 4–5 considered together.

7 Caveats and interpretation

Because these results can be easily misinterpreted, we pause to discuss a series of conclusions

that would not be supported by the theory and evidence discussed here.

34Morales et al. (2017) �nd no association between international air tra�c and 2009 H1N1 mortality using a sim-
ulation procedure that tests whether air tra�c is a causal mediator for other country traits known to be strongly
associated with the H1N1 mortality rate.
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First, these results do not question a role for international mobility in spreading infectious dis-

ease. Disease travels in people. Preliminary data on the ongoing coronavirus disease pandemic of

2019 show an inverse association between pre-pandemic exposure to international mobility and

the delay until pandemic arrival (Keita 2020), and our �ndings are consistent with those. Outside

of pandemic settings, some United States immigrants historically brought endemic diseases with

them (Ager et al. 2020) and in modern times, forced migration has been an important channel

for transmission of malaria and other endemic diseases (Montalvo and Reynal-Querol 2007; Baez

2011). But when endemic viruses, bacteria, and parasites travel with migrants, they move from

areas of high endemicity to areas with low endemicity and thus low immunity. In other words,

R0 for the arrival of endemic disease can vary greatly between countries, and by equation (10)

this implies that large ongoing mobility can increase the harm to health if immunity is very low

(R0 is very high) in the home country. New pandemic disease is distinct from endemic disease

in that, by de�nition, immunity is low around the world. Cross-country di�erences in R0 are

thus primarily determined by policy.

For similar reasons, these results do not suggest that limits on geographic mobility and personal

interaction in general have no e�ect on the harms from infectious disease. In theory, any reduc-

tion to interpersonal interaction inside national borders reduces R0 and thus �nal size. Early in

the covid-19 pandemic, cities with higher exposure to domestic mobility exhibited higher preva-

lence (Glaeser et al. 2020), and emergency restrictions on domestic mobility reduced prevalence

(Fang et al. 2020). The question considered here is whether restrictions on mobility between

countries reduce the international externality independent of restrictions on domestic mobility.

Epidemiological models have long recognized that limits on personal interaction within geo-

graphic areas (“patches”) can reduce R0 and thus �nal size, while reduced (but nonzero) interac-

tion between patches does not (e.g. Ma and Earn 2006). Theory suggests that R0 and thus �nal

size within each country are strongly a�ected by pre-pandemic constraints to domestic mobility,

and una�ected by pre-pandemic constraints to purely international mobility.

Finally, these results do not imply that emergency restrictions on international travel during a

pandemic have no e�ect. The data considered here measure permanent changes in international

mobility before pandemics begin, and the results do not directly test the e�ects of short-term

emergency travel restrictions. Emergency restrictions are only relevant to our analysis in that
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they present one possible mechanism for the reduced-form relationship of interest: If greater

pre-pandemic mobility constrains countries from imposing su�ciently large emergency travel

restrictions during the pandemic, and R0 abroad is su�ciently large relative to the home country

(equation (10)), then this presents a mechanism by which pre-pandemic international mobility

can a�ect �nal size. The mechanism requires two elements in composition: that greater pre-

pandemic mobility means fewer limits to mobility during the pandemic, and that fewer limits to

mobility during the pandemic have important e�ects on �nal size. Because we cannot distinguish

the reduced-form relationship from zero, we fail to �nd evidence that this mechanism is large.

An extensive public health literature has examined one part of this composed e�ect: the e�ect of

short-term emergency travel restrictions on arrival time and overall harm of pandemic disease.

Most of these works �nd very small e�ects on arrival time and negligible e�ects on eventual

prevalence. This has been the broad conclusion of works on pandemics of in�uenza (Cooper et

al. 2006; Germann et al. 2006; Bajardi et al. 2011; Yu et al. 2012, 765; Tizzoni et al. 2012), Ebola

(Otsuki and Nishiura 2016; Poletto et al. 2014), hiv (Docquier et al. 2014; Kenyon et al. 2014),

and covid-19 (Chinazzi et al. 2020, 3; Nowrasteh and Forrester 2020). A systematic review of

this literature focusing on in�uenza by Mateus et al. (2014, 868) concludes, “Travel restrictions

would make an extremely limited contribution to any policy for rapid containment of in�uenza

at source during the �rst emergence of a pandemic virus”. Another by Ryu et al. (2020) �nds

that “international travel-related NPIs [non-pharmaceutical interventions] would have limited

e�ectiveness in controlling pandemic in�uenza”. Ferguson et al. (2006, 448) �nd “that border

restrictions . . . are unlikely to delay spread by more than 2–3 weeks unless more than 99% e�ec-

tive”.

Though much of the work on emergency travel restrictions focuses on recent pandemics, these

�ndings have been similar for past pandemics. Shortly after the 1959 in�uenza pandemic, an ex-

pert group convened by the World Health Organization wrote that emergency travel restrictions

“were generally found to be ine�ective, resulting in at best a short delay in the onset of the epi-

demic.” Except for two countries—Israel and perhaps South Africa—“no e�ect was detected”. The

group concluded, “It seems that if such measures are to be e�ective, they must be very severe—so

severe as seriously to interfere with international travel and tra�c. This would be a high price to

pay for a few additional weeks’ freedom from the disease, since there is no evidence that intro-
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duction can be entirely prevented. Such action could only be justi�ed on technical grounds if the

extra time permitted the application of e�ective speci�c prophylactic measures. It is, however,

recognized that, confronted by a grave epidemic, health authorities might be forced by public

opinion to take such action, even though it was likely to be ine�ective” (WHO 1959, 19).

These �ndings regarding short-term reductions in international mobility are fundamentally dif-

ferent from ours, which relate to long-term reductions. But there are relevant to our �ndings in

that long-term reductions in mobility would be no more e�ective during an eventual pandemic,

but much more economically costly.

8 Conclusion

“Global commerce and travel enable infectious diseases to move around the world within days.

This leads to sometimes catastrophic consequences”, writes (Schloenhardt 2005, 264). “[I]t took

large-scale migration and the covid pandemic to �rmly establish globalization as a widely seen

threat,” writes Kobrin (2020, 282), without endorsing that view. Pueyo (2020) recommends a tax

on airline travel to reduce the pandemic externality. These widely-held opinions might be inter-

preted to mean that global integration through international mobility raises the expected harm

from new pandemics in the future. We �nd little support for such a conclusion in epidemiological

theory or the empirical traits of major recent pandemics.

Moreover, we �nd weak evidence of the opposite pattern: that in some pandemics, less exposure

to international mobility was associated with greater harm—particularly in the 2009 in�uenza

pandemic. This could arise because more isolated countries with less frequent exposure to a

variety of pathogens develop less cross-immunity to reduce the harm from a new pandemic.

This “hygiene hypothesis” appears to have shaped the mortality experience of isolated island-

states in the 1918 pandemic (Shanks et al. 2012; Shanks and Brundage 2013) and simulations

suggest it could have important e�ects today as well (Thompson et al. 2019; Sehrawat and Rouse

2020). It could also occur because exposure to international mobility gives countries higher

incomes, stronger health systems, and greater capacity for innovation (e.g. Hovhannisyan and

Keller 2015), all of which could reduce the harm in�icted by new pandemics. Separately, such a
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relationship could arise because isolation complicates globally coordinated surveillance, and “the

prevention of disease is inextricably linked to international cooperation and rights protections”

(Meier et al. 2020, 1436). Our analysis cannot distinguish or test for such mechanisms.

We do con�rm that greatly reduced exposure to international mobility can slightly delay pan-

demic arrival, with a halving of exposure to international mobility producing a delay on the

order of one week. In principle, even a brief delay of that kind could reduce pandemic harm by

“buying time to coordinate an appropriate public health response” (Wells et al. 2020), and could

“provide a small but important delay in the spread of a pandemic, especially if other disease con-

trol measures are implemented during the a�orded time” (Epstein et al. 2007). Our results fail to

reject zero correlation between large di�erences in arrival time and the overall harm in four pan-

demics. This suggests that in practice, small changes in pandemic arrival time are not typically

a binding constraint on the ability or willingness of countries to take measures that reduce �nal

size. Most recently, in the covid-19 pandemic, the New England Journal of Medicine wrote of the

United States, “We had ample warning, but when the disease �rst arrived, we were incapable

of testing e�ectively and couldn’t provide even the most basic personal protective equipment to

health care workers and the general public” (NEJM 2020).

The literature contains numerous policies that could e�ectively reduce R0 and thus the �nal

size of new pandemics. Any costs associated with those policies could in principle play the role

of a welfare-enhancing Pigouvian tax. These policies during pandemics include interventions

inside national borders, such as internationally-assisted containment in the country of origin

(Hollingsworth et al. 2006, 498), mass screening tests (Atkeson et al. 2020), and measures to pre-

vent interpersonal transmission within other countries. They furthermore include interventions

at the border, such as public information campaigns for travelers at entry points, quarantines,

isolation, and contact tracing (Huizer et al. 2015, 19; Selvey et al. 2015, 197). But the theoreti-

cal and empirical case for Pigouvian policy before the next pandemic begins—such as taxes or

quotas on international mobility in general—remains weak.
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Online Appendix
Global Mobility and the Threat of Pandemics:

Evidence from Three Centuries

Michael A. Clemens and Thomas Ginn — December 2020

A1 Expected Onset Date Derivation

The disease emerges in the foreign country, which can intuitively represent all countries besides the home
country. It follows the standard SIR model outlined in Equations 5a-5c:

¤(∗ = −(∗V∗� ∗ (A.1a)
¤� ∗ = (∗V∗� ∗ − W� ∗ (A.1b)
¤'∗ = W� ∗, (A.1c)

with asterisks to indicate values in the foreign country. Figure A1b represents the evolution of � ∗ (C) with
an initial value in the foreign country of 1 in 7 billion, V∗ = 0.58, and W = 0.38, leading to R∗0 = 1.5.

In each period, " foreigners are randomly selected to travel to the home country, and the selection is
independent of their health status. The probability of drawing at least one infected traveler in" draws in
period C is then _(", C) = 1−(1−� ∗ (C))" .35,36 The arrival of at least one infected traveler in each period can
be approximated as a non-homogeneous Poisson process with the parameter _(", C) as in Scalia Tomba
and Wallinga (2008).37 Let Λ(", C) =

∫ C
0 _(", B) 3B . The time of the expected �rst occurrence—the onset

date—is represented as:

C̃ (") =
∫ )

0
C _(", C) 4−Λ(",C )3C (A.2a)

= −C 4−Λ(",C )
����C=)
C=0
+

∫ )

0
4−Λ(",C )3C (A.2b)

≈
∫ )

0
4−Λ(",C )3C, (A.2c)

where) represents a time when all countries have at least one case.38 The �rst step comes from integration
by parts and the second step approximates the �rst term as 0.

Figure A1c shows _(5, 000, C) and _(500, 000, C), the probability of at least one positive case arriving to a
country with 5,000 and 500,000 average daily arrivals, respectively. These values re�ect travel patterns
in our data on 2008, when the average country received about 4,500 incoming travelers, and the country

35The parameter is an approximation of sampling with replacement.
36If only one origin country has infections," is the number of travelers from that country. If multiple origins have

di�erent rates of infection, the parameter could be adapted to 1 − (1 − �∗1 )
"1 (1 − �∗2 )

"2 , etc. The same modi�cations
can be made to allow di�erent prevalence among demographic groups in the foreign country.

37A non-homogeneous Poisson process is an approximation of repeated Bernoulli trials with a time-varying pa-
rameter.

38Equation A.2a parallels the exponential distribution which represents inter-arrival periods for a homogeneous
Poisson process. Intuitively, the density function is the probability of arrival in period C , _(", C), times the probability
of no arrivals through period C , 4−Λ(",C ) . For the derivation for non-homogeneous Poisson processes, see Ma (2011).
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receiving the most, China, received approximately 445,000 per day.

At the onset of the pandemic, � ∗ (C) is small enough that _(", C), and therefore Λ(", C), is close to 0. Even
with a large number of travelers, the disease is sparse enough in the foreign population that there is almost
no chance of drawing a positive case as traveler. However, � ∗ (C) is growing exponentially in the initial
phase; � ∗ (C) ≈ 041C where 0 = � ∗ (0) and 1 = V∗ − W∗ (Ma 2020). With exponential growth and thousands
of draws, _(", C) quickly increases from 0 to 1 once � ∗ (C) exceeds some in�ection point at a time g (").39

Separating A.2c at g ("):

C̃ (") =
∫ g (")

0
4−Λ(",C ) 3C︸                 ︷︷                 ︸

Λ(",C )≈0 =⇒ 4−Λ(",C )≈1

+
∫ )

g (")
4−Λ(",C ) 3C︸               ︷︷               ︸

Λ(",C )>0 =⇒ 4−Λ(",C )≈0

(A.3)

≈ g ("). (A.4)

Intuitively, the expected onset date can be approximated by the number of periods that the probability of
infected travelers arriving is close to 0. Using Figures A1a and A1c to estimate _(",g (")) ≈ 0.2 for all
" , solving for g (") yields:

1 − (1 − � ∗ (g (")))" = 0.2 (A.5)

041g (") = 1 − 0.81/" , (A.6)

using the exponential approximation of � ∗ (C) during the initial phase of the pandemic described above.40

Approximating 0.81/" ≈ 1 − 0.2
"

, setting the initial infected population 0 = 1/% where % is the foreign
population, and setting 1 = V∗ − W yields:

C̃ (") ≈ 1
V∗ − W

(
;=(0.2%) − ;=(")

)
. (A.7)

39We can de�ne g (") as the time when
∫ )
g (") 4

−Λ(",C ) 3C = 1, or the time when the expected onset date converges
to within 1 day of its limiting value. Intuitively, the probability of the �rst arrival occurring after g (") is small and
approaching zero.

40To approximate the relationship between g (") and" , we �nd the time when expected waiting time converges in
Figure A1a, and the corresponding probability of at least one infected traveler in Figure A1c. This results in Equation
A.5. The probability of at least one infected traveler per period is 0.2, and the probability that no infected travelers
have arrived quickly approaches 0. The 0.2 estimate will vary slightly with M, V∗, and W , though further numerical
simulations and Equation 3 suggest this impact is small.
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Appendix Figure A1: Approximating ˜C (")

Orange: "1 = 5, 000 Green "2 = 500, 000

(a) Expected Waiting Time Through Time C :
∫ C

0 4
−

∫ C

0 _ (",B)3B3C

(b) Proportion Infected in Foreign Country: � ∗ (C)

(c) Probability ≥ 1 Infected Traveler in C : _(", C) = 1 − (1 − � ∗ (C))"

Figure A1a shows the expected waiting time for the disease to arrive through C . Figure A1b shows Equation A.1b
for V∗ = 0.58, W∗ = 0.38, ? = 0, and an initial value of � ∗ (0) = 1/7, 000, 000, 000. The y-axis is the proportion
of the population that is infected at time C . Figure A1c shows the corresponding probability of drawing at least
one infected traveler in period C among 5,000 and 500,000 incoming travelers on the orange and green curves,
respectively. The y-axis is the probability of drawing at least one infected traveler. The y-axis is the number
of periods in the same unit as the x-axis and V (usually days). See the text and corresponding footnotes for
explanations of g (") and the blue and purple dashed lines.
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A2 Summary statistics

Appendix Table A1: Mobility in 2008: Global Travel and the Top 20 Countries

Trips Annual Incoming Trips % Trips % Trips Centrality
Rank Country Trips Per Capita Foreign Immigrant Rank

World 2,083,384,334 0.31 50.4 0.8
Average Country 9,556,809 2.34 55.3 1.9
Median Country 1,687,618 0.57 55 0.9

1 China 163,323,823 0.12 79.7 0.1 9
2 Germany 142,315,188 1.73 18.5 0.4 1
3 United States 136,484,770 0.45 44.5 1.6 6
4 Hong Kong 106,415,446 15.29 16.7 0.1 35
5 France 101,315,253 1.57 61 0.4 2
6 United Kingdom 99,226,661 1.61 32.8 0.7 4
7 Spain 78,789,732 1.71 73 0.7 3
8 Poland 76,163,646 2 78.7 0.2 12
9 Italy 73,962,717 1.26 58.4 0.6 5
10 Russia 51,774,794 0.36 46.8 1.8 14
11 Canada 47,125,763 1.42 37.4 1.1 23
12 Macao 46,395,134 90.05 49.5 0.1 57
13 Netherlands 38,972,675 2.37 26.1 0.3 7
14 Ukraine 38,720,080 0.84 66.4 0.7 31
15 Mexico 37,605,013 0.34 57.4 0.9 39
16 Austria 33,191,256 3.99 65.1 0.3 11
17 Japan 30,107,584 0.24 28.6 0.6 13
18 Turkey 29,837,421 0.42 83.3 0.4 17
19 Saudi Arabia 25,156,819 0.97 60.4 1.7 42
20 Switzerland 24,869,726 3.25 34.6 0.6 8

Trips are the total number of incoming foreigners, incoming immigrants, returning citizens, and returning emigrants. It is estimated
based on data from UNWTO (2020a), Azose and Raftery (2019), and the random forest model as described in the text. The percentage
of foreigners assumes all immigrants from Azose and Raftery (2019) are foreigners, though some are returning emigrants. Azose
and Raftery (2019) estimate migration over the �ve-year period between mid-2005 and mid-2010; we divide these estimates by 5 for
an annual estimate for 2008. Centrality rank is based on the eigenvector centrality of the global �ows matrix that leaves out the top
origin for each destination country.

A3 Detailed data sources

A3.1 Connectivity

A3.1.1 Global mobility estimates

As discussed in the main text, the mobility data is based on the United Nations World Tourism Organi-
zation’s (UNWTO) measure of outbound �ows UNWTO (2020a), drawing on the methodology used to
construct the Global Transnational Mobility Dataset (Recchi et al. 2019), and migration data from Azose
and Raftery (2019). The UNWTO data consist of administrative reports of arrivals from each destination

A-4



country. The arrivals are listed by the origin country, although some countries use aggregations, meaning
these data do not capture the total �ows. Since each country measures arrivals di�erently, the measure-
ments are categorized into the eight types listed in Table A2. Of the 17,216 bilateral routes reported,
29% report more than one type. In these cases, we follow the GTMD ranking of types, which mostly
corresponds to the type’s prevalence in the overall dataset.

Appendix Table A2: UNWTO Data Types

Rank Type
Routes
Total

Routes
Used

% Total
Flows

1 TFR: Arrivals of non-resident tourists
at national borders, by country of residence 3,896 3,896 34%

2 TFN: Arrivals of non-resident tourists
at national borders, by nationality 3,561 3,368 13%

3 VFR: Arrivals of non-resident visitors
at national borders, by country of residence 2,724 2,370 13%

4 VFN: Arrivals of non-resident visitors
at national borders, by nationality 2,999 2,248 27%

5 TCER: Arrivals of non-resident tourists in all types
of accommodation establishments, by country of res. 1,355 798 9%

6 TCEN: Arrivals of non-resident tourists in all types
of accommodation establishments, by nationality 498 333 1%

7 THSR: Arrivals of non-resident tourists in hotels and
similar establishments, by country of residence 1,520 253 2%

8 THSN: Arrivals of non-resident tourists in hotels and
similar establishments, by nationality 665 108 1%

Total 17,216 13,374

We check the measurement error induced by the di�erent data types across countries by estimating the
variation where the same route is reported in multiple categories. Using within-route �xed e�ects to
weight each data type, we �nd that the correlation between the weighted and unweighted sum of arrivals
at the country level is 0.98, and therefore argue that this measurement error is unlikely to change our
conclusions.

Across 218 countries, and therefore 2182-218 = 47,306 bilateral routes in total, the UNWTO data provides
counts for 12,195 bilateral routes in 2008, or 26% of the total cells. We estimate the missing cells in multiple
stages. First, we use estimates from 2007 (966 additional routes) and 2006 (213 additional routes) when
available, which yields 13,374 total routes. Next, since zeroes were otherwise not recorded in the UNWTO
data, we impute a �ow of 0 if all of the following are true:

• the UNWTO estimate (2006-08) is missing for the country pair, but the destination reports estimates
from other origins,

• the UNWTO estimate (2006-08) is also missing in the reverse direction, but the origin reports esti-
mates from other destinations,

• the estimated migration �ow between 2005 and 2010 is less than one, and
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• the Global Transnational Mobility Dataset (GTMD) estimate for 2011 (the earliest year available)
is less than one. The GTMD �lled in missing values from the UNWTO data using private data on
air passenger �ows between airports, so this condition in e�ect states that the air passenger data
used in the GTMD is zero in 2011.

This captures 2,749 total cells where zero is imputed.

In the next stage, we predict the bilateral �ows that are still missing with random forest models. We train
the model on the route’s characteristics, combining the following data sources:

• direct �ights: the number of nonstop routes in 2009 between the countries, using data from Open-
Flights.org (2009),

• migration: bilateral migration �ows estimated by Azose and Raftery (2019) in 5-year intervals,
dividing the 2005-10 estimate by 5 for an estimate of 2008,

• gravity data: origin and destination populations, GDP per capita (which come from the World
Bank’s World Development Indicators), the distance between the most populated cities, di�erence
of time zones in hours , an indicator for a common o�cial language, a language spoken by at
least 9% of the population, contiguity, a common colonizer, currency, or religion, all from CEPII’s
GeoDist and Gravity datasets Mayer and Zignago (2011) and Head et al. (2010)

• UN sub-regional and European Union (EU) classi�cations, and a dummy for whether they’re in the
same sub-region or both in the EU.

We �rst train a model that includes the �ow in the reverse direction when available. This model is used
to impute all cells with one direction missing and one direction measured or imputed up to this point
in our methodology. The parameters of the model (number of trees and variables) are tuned by training
the model on a random half of the data, testing on the other half, and minimizing the validation root
mean squared error. A second random forest is trained using all of the values imputed to this point and
used to predict the remaining missing cells. The dependent variable in the model is the natural log of the
estimates greater than zero and zeroes remaining.

We assess our method in multiple ways. We estimate alternative predictions using an OLS gravity model
on the same independent variables used to train the random forest, as well as origin and destination �xed
e�ects. We also try a lasso speci�cation that selects the independent variables used for predictions. In
Figure A2, we compare these estimates to the true values for the 26% of cells in the bilateral matrix where
data is available. Panel a shows that the random forest best approximates the true distribution; the mean
estimates from the OLS and lasso exceed the true means. Panel b shows that the random forest also
predicts the true values better than the OLS across the distribution.

A3.2 Influenza 2009
2009 �nal mortality estimates, as noted in the main text, are drawn in part from Simonsen et al. (2013)
and Dawood et al. (2012). Mortality rates per 100,000 are estimated using 2009 country population from
the World Bank World Development Indicators (SP.POP.TOTL).

The Simonsen et al. (2013) dataset is freely available online at https://www.nivel.nl/en/in�uenza-mortality
(Accessed November 23, 2020), part of the In�uenza Mortality Research Project at the Netherlands Insti-
tute for Health Services Research (NIVEL).

Arrival dates for the 2009 pandemic are collected as follows. We begin with the dates for 93 countries
collected by Balcan et al. (2009): Argentina, Australia, Austria, Bahamas, Bahrain, Bangladesh, Barba-
dos, Belgium, Bermuda, Bolivia, Brazil, British Virgin Islands, Bulgaria, Canada, Cayman Islands, Chile,
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Appendix Figure A2: Mobility: 2008 Actual vs. Predicted Bilateral Flows (26% of Cells)

(a) Kernel Densities

(b) Correlations

Panel (a) shows the kernel densities of four estimates of bilateral trip �ows in 2008. The dark gray line shows the actual
data from UNWTO. The dashed lines show the predicted values across the same 26% of cells. The teal dashed line shows
the predicted values from the random forest described in the text. The gray dashed line shows the predicted values from
an ordinary least squares speci�cation, and the orange dashed line shows the predicted values from a lasso algorithm. The
kernel function is the Epanechnikov kernel and other default Stata settings are used. Panel (b) plots the random forest and
OLS estimates against the actual values, with the orange line representing 45◦ and an estimate that equals the measured
value.
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China (Mainland), Colombia, Côte d’Ivoire, Cuba, Cyprus, Czech Republic, Denmark, Dominica, Domini-
can Republic, Ecuador, Egypt, El Salvador, Estonia, Finland, France, French Polynesia, Germany, Greece,
Guatemala, Honduras, Hong Kong, Hungary, Iceland, India, Ireland, Israel, Italy, Jamaica, Japan, Jordan,
Kuwait, Laos, Lebanon, Luxembourg, Macau, Malaysia, Morocco, Netherlands, Netherlands Antilles, New
Zealand, Nicaragua, Norway, Oman, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland,
Portugal, Puerto Rico, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovakia, Solomon Islands, South
Africa, South Korea, Spain, Sri Lanka, Suriname, Sweden, Switzerland, Thailand, Trinidad and Tobago,
Turkey, Ukraine, United Arab Emirates, United Kingdom, United States, Uruguay, Venezuela, Vietnam,
Western Sahara, and Western Samoa. From the World Health Organization In�uenza A(H1N1) Emer-
gency Updates of June 17, June 19, July 6, July 27, August 12, August 19, and November 13, 2009 we take
arrival dates for Andorra, Burundi, Chad, Haiti, Kiribati, Marshall Islands, Martinique, Saint Kitts and
Nevis, Saint Martin (France), Saint Vincent and the Grenadines, Seychelles, Sint Eustatius (Netherlands),
Sint Maarten (Netherlands), Timor-Leste, Tonga, Turks and Caicos Islands (UK), Tuvalu, and Wallis and
Futuna (France).

For 72 other countries we manually collected reports of the �rst case from individual sources, predom-
inantly archived press reports. These are: Afghanistan from WHO EMRO. Afghanistan, Surveillance,
forecasting, and response, Albania from Reuters. Albania con�rms �rst cases of H1N1 �u virus. July 21,
2009, American Samoa (US) from PAHO. Update In�uenza A (H1N1) Regional Report (17 Jul 2009). July 17,
2009, Angola from ANGOP. “Angola reports �rst H1N1 cases.” August 25, 2009, Antigua and Barbuda from
Associated Press. “Boy, 9, becomes �rst swine �u case in Antigua”. Taiwan News. June 20,2009 (archived),
Armenia from WHO Pandemic (H1N1) 2009 - update 76. November 27, 2009, Azerbaijan from “Reuters.
Azerbaijan reports �rst two H1N1 �u cases. July 30, 2009”, Belarus from RIANovosti. Belarus registers
�rst case of swine �u - Health Ministry. August 19, 2009. (archived), Belize from Caribbean360.com. July
8: Belize (BZ): �rst case con�rmed. July 8, 2009. (archived), Benin from The Times. “Swine �u con�rmed
in Benin,” May 2, 2009. (archived), Bhutan from Wangchuk S, et al. In�uenza surveillance from Novem-
ber 2008 to 2011; including pandemic in�uenza A(H1N1)pdm09 in Bhutan. May 13, 2013, Bosnia and
Herzegovina from Mondo. Novi grip stigao u BiH!. June 29, 2009. (archived), Chad from WHO Pandemic
(H1N1) 2009 - Update 86. February 5, 2010, Costa Rica from Avalos, Angela. “Con�rmada primera tica
con �ebre porcina.” Nacion.com. April 28, 2009. (archived), Democratic Republic of the Congo from In-
dependent Online. DRC First Swine Flu Case. August 16, 2009. (archived), Djibouti from WHO Pandemic
(H1N1) 2009 - update 64. August 30, 2009, Ethiopia from Reuters. “Ethiopia con�rms �rst cases of H1N1”.
June 19, 2009. (archived), Gabon from WHO Pandemic (H1N1) 2009 - Update 60. July 31, 2009, Georgia
from Reuters. Georgia reports its �rst case of H1N1 �u. June 18, 2009, Greenland (Denmark) from Focus
Information Agency. “Swine �u hits Greenland as toll rises in Europe”. November 11, 2009, Guam (US)
from Karrigan, Kevin. First Case of Swine Flu Con�rmed On Guam. PNC News. July 1, 2009 (archived),
Guinea from WHO Pandemic (H1N1) 2009 - Update 96. April 16, 2010, Indonesia from Reuters. Indone-
sia con�rms �rst cases of H1N1 �u virus, June 24, 2009, Iraq from Kami, Aseel. Reuters. “Iraq con�rms
�rst cases of H1N1 �u virus”, Isle of Man (UK Crown Dependency) from BBC News. First Isle of Man
Swine Flu Case. June 12, 2009, Kenya from Reuters. Kenya con�rms �rst case of H1N1 �u virus.June 29,
2009, Kosovo from Reuters. “Kosovo registers �rst case of H1N1 �u virus.” July 27,2009, Kyrgyzstan from
Trend News Agency. “Swine �u hits Kyrgyzstan.” August 24, 2009, Latvia from Reuters. Latvia has �rst
con�rmed case of H1N1 �u. June 23, 2009, Lesotho from IOL. Lesotho Con�rms �rst Cases of Swine Flu.
Spetember 9, 2009, Libya from Reuters. CORRECTED: Libya reports �rst case of new H1N1 �u. July 5,
2009, Lithuania from Reuters. Lithuania con�rms �rst case of H1N1 �u. JUNE 26, 2009, Macedonia from
Reuters. Macedonia con�rms �rst two cases of H1N1 �u virus. July 4, 2009, Madagascar from Rajatonirina
et al. “The Spread of In�uenza A(H1N1)pdm09 Virus in Madagascar Described by a Sentinel Surveillance
Network”, Malawi from Associated Press. Taiwan News. September 10, 2009, Mali from The New Hu-
manitarian. “Lab Con�rms H1N1.” January 13, 2010, Malta from The Malta Independent. “Maltese Swine
�u cases con�rmed” July 3, 2009, Mauritania from WHO Pandemic (H1N1) 2009 - Update 86. February 5,
2010, Mauritius from Reuters. Mauritius con�rms �rst of H1N1 �u virus. June 30, 2009, Mexico from Roos,
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https://doi.org/10.1371/journal.pone.0037067.
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Robert. University of Minnesota CIDRAP. May 1, 2009, Micronesia from Palikir, Pohnpei. “First Reported
case of Pandemic In�uenza A/H1N1 in the Federated States of Micronesia.” College of Micronesia-FSM.
July 21, 2009, Moldova from WHO Pandemic (H1N1) 2009 - Update 60. July 31, 2009, Monaco from Reuters.
“Mexican swine �u victims were young.” June 29, 2009, Mongolia from MonInfo. “Breaking news: Swine
�u outbreak in Mongolia.” October 13, 2009, Montserrat from GIU.gov.ms. Montserrat reports �rst h1n1
�u case. November 24, 2009. (archived), Mozambique from CM Journal. Gripe A: Moçambique regista
primeiro caso. August 18, 2009, Myanmar (Burma) from Reuters. Myanmar reports �rst case of H1N1 �u.
June 27, 2009, Namibia from SABCNews. First two cases of swine �u con�rmed in Namibia. July 20, 2009,
Nepal from ExpressBuzz. Swine �u strikes Nepal. June 29, 2009 (archived), Niger from WHO Pandemic
(H1N1) 2009 - Update 89. February 26, 2010, Nigeria from Reuters. “Nigeria records �rst swine �u case in
U.S. girl.” November 5, 2009, North Korea from Sue-young, Kim. The Korea Times. “Worker at Gaeseong
Site Diagnosed With H1N1 Flu.” November 16, 2009, Northern Mariana Islands from Radio New Zealand
International. “Guam reports its �rst swine �u-related death.” July 21, 2009. (archived), Pakistan from
“Nishtar, Sania, 2010, H1N1 Outbreak in Pakistan: Lessons Learnt, NTS Working Paper Series No. 4, Sin-
gapore: RSIS Centre for Non-Traditional Security (NTS) Studies”, Palestine from Reuters. “Palestinians
report �rst case of H1N1 �u.” June 10, 2009, Republic of Congo from IOL. “Congo students diagnosed
with swine �u.” October 28, 2009, Rwanda from Wane et al. 2009 Pandemic In�uenza A (H1N1) Virus
Outbreak and Response – Rwanda, October, 2009–May, 2010, San Marino from Radio e Televisione della
Repubblica di San Marino. “In�uenza A/H1N1: primo caso in Repubblica.” November 5, 2009. (archived),
São Tome and Príncipe from WHO Pandemic (H1N1) 2009 - Update 71. October 17, 2009, Senegal from
WHO Pandemic (H1N1) 2009 - Update 87. February 12, 2010, Serbia from Sekularac, Ivana. Reuters. “Ser-
bia con�rms �rst case of H1N1 �u”. June 24, 2009, Slovenia from Reuters. “Slovenia con�rms �rst H1N1
case.” June 19, 2009, Somalia from The New Humanitarian. “WHO con�rms �rst cases of H1N1.” Novem-
ber 16, 2009, Sudan from Heavens, Andrew. Reuters. “Sudan reports �rst H1N1 �u case.” July 16, 2009,
Swaziland from WHO Pandemic (H1N1) 2009 - Update 60. July 31, 2009, Syria from The Times of India.
Syria con�rms �rst swine �u case. July 4, 2009. (archived), Taiwan from Jennings, Ralph. Reuters. Taiwan
reports �rst case of H1N1 �u. May 19, 2009, Tajikistan from WHO Pandemic (H1N1) 2009 - update 69.
October 4, 2009, Tanzania from University of Minnesota CIDRAP. H1N1 FLU BREAKING NEWS. July 9,
2009, U.S. Virgin Islands from The St. John Source. “Swine Flu Case Con�rmed on St. Thomas.” June 16,
2009, Yemen from Reuters. Jordan, Qatar, Yemen identify �rst H1N1 �u cases. June 16, 2009, Zimbabwe
from University of Minnesota CIDRAP. H1N1 FLU BREAKING NEWS. July 9, 2009.

For 18 countries we were not able to locate an arrival date in health agency reports or press reports, so we
use the date that each country reported its �rst con�rmed pandemic-strain in�uenza test (A/H1N1pdm09)
to the World Health Organization’s FluNet database, between March 2009 and March 2010: Algeria, An-
guilla (UK), Aruba (Netherlands), Cambodia, Cameroon, Croatia, Fiji, French Guiana (France), Guade-
loupe (France), Iran, Kazakhstan, Maldives, Montenegro, New Caledonia, Saint Lucia, Tunisia, Uganda,
and Zambia (accessed April 22, 2020).

GDP per capita at purchasing power parity and urbanization rate for the year 2008 are from the World
Bank World Development Indicators. That source lists no 2008 GDP per capita values for Cuba or Syria;
these, respectively $6,336 and $5,307, are taken from Bolt et al. (2018). The Healthcare Access and Quality
Index for the year 2010 is from Barber et al. (2017). Current health expenditure as a fraction of GDP
for the year 2009 is from the World Health Organization’s Global Health Expenditure Database, Version
December 2019 (WHO 2019), with the following exceptions: The WHO reports no value for Hong Kong,
which is instead taken from the Hong Kong Domestic Health Accounts 2009–2010 Summary Report, Food
and Health Bureau, Government of Hong Kong Special Administrative Region, p. 1 (5.2 percent). The
WHO reports no 2009 value for Montenegro, which was still in the process of separating from Serbia
at the time, so the value for Serbia is used for Montenegro (9.3 percent). The WHO reports no values
for Puerto Rico; the 2009 value (11.9 percent) is from Informe de la Salud en Puerto Rico 2014, Secretaría
Auxiliar de Plani�cación y Desarrollo, Departamento de Salud, Estado Libre Asociado de Puerto Rico,
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2014, p. 9.

Latitude of the capital city in each country is from the GEO CEPII database (Mayer and Zignago 2011).

A3.3 Influenza 1957
For �nal mortality we use the annual respiratory death rate per 10,000 estimated by Viboud et al. (2016),
converted to a rate per 100,000 for comparability with the other pandemics. We omit their estimates
for Scotland, England & Wales, and West Berlin, because these are subsets of other geographic areas in
the dataset. We combine their estimates for the Republic of Ireland and Northern Ireland into a single
mortality rate for the island of Ireland, weighting by the relative populations reported by Viboud et al.
(2016). The pandemic arrival months for almost all countries are taken from UNESCO (1958). For a few
countries, UNESCO (1958) does not report an arrival month so we obtained them elsewhere: Germany
and New Zealand from Dunn (1958), and Iceland from Sigurjónsson et al. (1959).

GDP per capita for 1956 (1990 U.S. dollars at purchasing power parity) is from the Maddison Project
(Bolt et al. 2018). Child mortality (under age 5, per 1,000 live births) in 1956 is from Gapminder (2020),
which for this historical period draws on UNIGME, a data collaboration of UNICEF, WHO, the UN Pop-
ulation Division and the World Bank. The source contains estimates for Czechia and Slovakia but not
for Czechoslovakia. We estimate the rate for Czechoslovakia as a population-weighted average of the
source’s �gures for Czechia and Slovakia, where the relative populations in 1960 are from the Clio Infra
database of historical population with modern borders (Fink-Jensen 2015).

A3.4 Influenza 1918
Final mortality for the fall wave is from Patterson and Pyle (1991, 14–15) and mortality for the combined
spring and fall waves is from Johnson and Mueller (2002, 110-114).

Fall-wave arrival dates for the geographic areas corresponding to mid-1991 international borders are from
Patterson and Pyle (1991, 8–12) for most countries: Albania, Algeria, Andorra, Antigua and Barbuda,
Armenia, Australia, Austria, Azerbaijan, Bangladesh, Barbados, Belarus, Belgium, Bosnia and Herzegov-
ina, Bulgaria, Burundi, Cambodia, China, China, Hong Kong, Colombia, Costa Rica, Croatia, Cyprus,
Czechoslovakia, D.P.R. of Korea, Ecuador, Egypt, El Salvador, Equatorial Guinea, Estonia, Finland, For-
mer Yugoslavia, France, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guinea-Bissau, Honduras,
India, Ireland, Japan, Kuwait, Laos, Latvia, Libya, Lithuania, Luxembourg, Maldives, Moldova, Monaco,
Montenegro, Morocco, Myanmar, Netherlands, Norway, Pakistan, Panama, Paraguay, Peru, Philippines,
Republic of Korea, Romania, Rwanda, San Marino, São Tome and Príncipe, Saudi Arabia, Serbia, Slove-
nia, Sri Lanka, Swaziland, Sweden, Switzerland, Syrian Arab Republic, Tanzania (Mainland), Thailand,
Tunisia, Turkey, United Kingdom, Venezuela, and Vietnam. Arrival dates for most of Africa are from
Patterson and Pyle (1983, 1300–1304): Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon,
Central African Republic, Chad, Congo, Côte d’Ivoire, D.R. Congo, Djibouti, Eritrea, Ethiopia, Gabon,
Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritania, Mozambique, Niger, Nigeria, Senegal, Sierra
Leone, Somalia, South Africa, Togo, Uganda, Zambia, and Zimbabwe, as well as providing a date for
Yemen (Aden). From Vollmer and Wójcik (2017) we take fall-wave arrival dates for Bolivia, Guatemala,
Guyana, Haiti, Hungary, Iraq, Jamaica, Namibia, Nepal, Nicaragua, and Poland. From Killingray (1994)
we take fall-wave arrival dates for Bahamas, Belize, Dominica, Dominican Republic, Saint Lucia, St. Kitts
and Nevis, St. Vincent and the Grenadines, Suriname, Trinidad and Tobago, and Puerto Rico. From Frost
and Sydenstricker (1919, 1361–1363) we take fall-wave arrival dates for Canada, Cuba, Italy, Madagascar,
Mexico, Spain, United States, and Uruguay. From Vaughan (1921, 66) we take fall-wave arrival dates for
Denmark, New Zealand, Portugal, and Russia. From Langfeldt Lind (2012, 10) we take fall-wave arrival
dates for Iran, Israel/Palestine, Jordan, and Lebanon. We take fall-wave arrival dates for Argentina and
Brazil from Jordan (1925, 946), Fiji and Tonga from Herda (2000, 135), and Bahrain and the United Arab
Emirates (Afkhami 2003). Finally, we collect fall-wave arrival dates for Chile (Chowell et al. 2014, 1805),
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Iceland (Gottfredsson 2008), Indonesia (Chandra et al. 2013, 186), Mauritius (Gealogo 2009, 271), Samoa
(Tomkins 1992), and Taiwan (Hsieh and Chan 2011, 2). We impute the arrival month for Afghanistan
from that of Northern India, because in Afghanistan the epidemic “peaked about the same time as did the
epidemic in Northern India” (Kohn 2007, 1–2). Shanks and Brundage (2013) state that Papua New Guinea
was never hit by the pandemic.

Spring-wave arrival dates are from Patterson and Pyle (1991, 5–8), except the following: Malaysia and
Singapore from Liew (2007), Mexico and the United States from Frost and Sydenstricker (1919, 1361).
When none of the sources o�ers a separate spring-wave arrival date, we consider the date of �rst arrival
in the combined spring-fall regressions to be the arrival date of the fall wave. When the sources provide
an exact date we use it. When they provide a partial date we create an unbiased estimate of the date
conditional on the information given: “October” is estimated as October 15, “early October” is estimated
as October 7, “�rst week of October” is estimated as October 3, and so on.

GDP per capita for 1917 (1990 U.S. dollars at purchasing power parity) is from the Maddison Project (Bolt
et al. 2018), supplemented by the estimates of Prados de La Escosura (2012) for several countries in Africa
at 1913 where no Maddison estimate is available: Belgian Congo, Botswana, Cameroon, Chad, Gambia,
Kenya, Madagascar, Mauritius, Nigeria, Senegal, Sierra Leone, Somalia, and Southern Rhodesia. Child
mortality (under age 5, per 1,000 live births) in 1917 is from Gapminder (2020), which for this historical
period draws on Vladimir Shkolnikov’s Human Mortality Database and B.R. Mitchell’s International His-
torical Statistics. The source contains estimates for Czechia and Slovakia but not for Czechoslovakia. We
estimate the rate for Czechoslovakia as a population-weighted average of the source’s �gures for Czechia
and Slovakia, where the relative populations in 1920 are from Rothenbacher (2002, 145–6).

A3.5 Influenza 1889
Final mortality estimates by city are from Valleron et al. (2010), calculated as in the source: �u mortality is
sum-total excess all-cause mortality during the period of observation October 4, 1889 to March 28, 1890,
with average mortality during the �rst four weeks of this period taken as the baseline. Most arrival dates
are from Parsons (1891b), with the exception of the Swiss cities (Basel, Bern, Gens/Geneva, and Zürich)
from Schmid (1895), and Warschau/Warsaw from Ruhemann (1891). Peak dates are the week of highest
excess mortality in the Valleron et al. (2010) data during the �rst wave (up to and including the �rst half
of February 1890).

A3.6 Coronavirus 2019
The date of arrival of the novel 2019 coronavirus in each country and country population are from Our
World in Data at Oxford University (Ritchie 2020), as of June 21, 2020.

A3.7 Historical population within modern borders
For all years (1889, 1918, 1957, and 2009) we begin with the population estimates from the Maddison
Project (Bolt et al. 2018), which use constant 1990 borders. For countries with no Maddison estimate, we
use the estimates of the Clio Infra database (Fink-Jensen 2015) linearly interpolated between the decadal
estimates in the source. Clio Infra uses 2012 borders, but for none of the relevant countries were there
substantial changes in borders between 1990 and 2012. Both Maddison and Clio Infra omit estimates that
could be used to reconstruct the population within the 1991-borders area of the former Soviet Union in
either 1889 or 1918; we take those from Vinogradov (2016, 10).

For the 2009 pandemic, borders are resolved to their mid-1991 location by summing the populations of suc-
cessor states into units representing the Former Soviet Union, Former Yugoslavia, and Former Czechoslo-
vakia.
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Appendix Figure A3: Placebo tests for excess mortality estimation
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Excess mortality estimates are actual In�uenza-Like Illness mortality (age 15–49) compared
to counterfactual mortality predicted for 2009 and 2010 by Kernel Regularized Least Squares
(Hainmueller and Hazlett 2014) �t to the data for the four years before and after the pandemic
(2005–2008 and 2011–2014), pooled. Placebo estimates �t the counterfactual curve with the
four pre-pandemic years except the placebo year closest to the pandemic, along with four
post-pandemic years. For example, the placebo estimate for 2007 is actual mortality in 2007
compared to counterfactual mortality predicted by a �t to the data from 2004–2006, 2008,
and 2011-2014 pooled. Vertical spikes show bootstrapped 95% con�dence intervals on the
median, 1,000 draws each.

A4 Excess mortality estimates, Influenza-Like Illness age 15–49

We construct our measure of 2009–2010 H1N1 in�uenza mortality by computing excess in�uenza-like
illness mortality as follows. We begin with annual prime-age in�uenza-like illness (ILI) deaths for each
country. From the World Health Organization Mortality Database (December 15, 2019 update), for each
year we draw the number of deaths reported by each country due to in�uenza-like respiratory illness.
This is the sum of deaths in the International Classi�cation of Diseases, Tenth Revision, Clinical Modi�-
cation [ICD-10-CM] codes J09–J18 and J20–J22. This includes deaths from pneumonia as Noymer (2008)
recommends. We restrict the deaths to people age 15–49, because disproportionate mortality among
prime-age adults strongly distinguished the 2009 pandemic strain of H1N1 in�uenza from seasonal in-
�uenza (Shrestha et al. 2011; Simonsen et al. 2013). Due to a large number of missing values for country
population in the WHO Mortality Database, we estimate rates per 100,000 population age 15-49, using
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age-speci�c population in each year linearly interpolated from the quinquennial estimates in the United
Nations World Populaton Prospects 2019 (POP/DB/WPP/Rev.2019/POP/F07-1).

We estimate counterfactual prime-age in�uenza-like illness deaths—in the absence of the pandemic—as
follows. We �t the trend in these mortality rates by regressing annual mortality from the four years before
and after the pandemic (2005–2008 and 2011–2014) on year with Kernel Regularized Least Squares (KRLS,
Hainmueller and Hazlett 2014) to make minimal assumptions on functional form. With the KRLS �t, we
impute separately for each country the counterfactual on-trend mortality for 2009 and 2010 combined.
Our 2009 pandemic in�uenza mortality estimate is then the sum of excess mortality above trend for 2009
and 2010, for each of 99 countries.

We check this method with a set of placebo tests. Estimating excess mortality in this way should not
spuriously generate excess deaths in non-pandemic years. Figure A3 shows this test. The solid dots (black)
are the cross-country median of actual prime-age ILI mortality in 2009 and 2010 in excess of the KRLS
counterfactual trend when the counterfactual is estimated using 2005–2008 and 2011–2014. The hollow
(red) dots are placebo excess mortality: the median of actual mortality in excess of trend when the trend
is estimated with a KRLS �t using the four years before but closest to the actual pandemic—except the
placebo year—and the four years after the actual pandemic. For example, the counterfactual for placebo
year 2008 is estimated with a KRLS �t of 2004–2007 and 2011–2014, the counterfactual for placebo year
2007 is 2004–2006, 2008, and 2011–2014, and so on. 95% con�dence intervals on the median in each year
are bootstrapped with 1,000 draws in each year. Median placebo excess mortality is indistinguishable from
zero in each pre-pandemic year (2004–2008). It is highly statistically signi�cant in the real pandemic year
(2009). It is elevated but not statistically distinguishable from zero in 2010. This evidence is consistent
with the ability of this excess mortality method to detect the occurrence of the pandemic.

A transparent check on the method is simply to plot the raw data and the KRLS counterfactual �ts, in
Figure A4. In the �gure, countries are ordered from the country with the largest percent rise in excess
mortality in 2009 to the smallest. Only the �rst 48 of the 99 countries are shown, that is, the 48 countries
with the largest percent rise in excess mortality at the time of the pandemic. Visual inspection clearly
shows the arrival of the pandemic in countries known to be hit by it, such as Mexico, the United States,
Australia, Argentina, and many others. Statistical noise is evident in the �gure, but overall the �gure cor-
roborates the ability of this excess mortality method to extract a meaningful signal of pandemic mortality.

A5 Heterogeneity by hemisphere

Table A3 tests whether the relationship between international mobility and timing of the 2009–2010 H1N1
in�uenza pandemic arrival are heterogeneous by hemisphere, given that the timing of in�uenza spread
often exhibits seasonal patterns. We separate countries according to whether their capital city is located
north of the Tropic of Cancer, south of the Tropic of Capricorn, or between the Tropics, following e.g.
Simonsen (1999).

A6 Arrival time regressions with per-capita mobility

Table A4 reanalyzes main-text Table 1, using per-capita measures of immigration and incoming trips
rather than absolute numbers of immigrants and trips.
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Appendix Figure A4: Excess mortality, �rst 24 of top 48 countries by relative rise in 2009
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Dots show raw data for the age-speci�c mortality rate per 100,000 due to In�uenza-Like Illness, age 15-49, in the WHO Mortality
Database, 15 December 2019 update. Regression curve is Kernel Regularized Least Squares (Hainmueller and Hazlett 2014) �t to
the data for the four years before and after the pandemic (2005–2008 and 2011–2014) pooled. Dotted vertical red spikes in 2009 and
2010 show the values summed to arive at excess mortality estimates.
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Appendix Figure A4: Excess mortality, next 24 of top 48 countries by relative rise in 2009
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Dots show raw data for the age-speci�c mortality rate per 100,000 due to In�uenza-Like Illness, age 15-49, in the WHO Mortality
Database, 15 December 2019 update. Regression curve is Kernel Regularized Least Squares (Hainmueller and Hazlett 2014) �t to
the data for the four years before and after the pandemic (2005–2008 and 2011–2014) pooled. Dotted vertical red spikes in 2009 and
2010 show the values summed to arrive at excess mortality estimates.
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Appendix Table A3: Influenza 2009: International mobility and
the timing of pandemic arrival, heterogeneity by latitude

Dep. var.: Day of pandemic arrival
Mobility measure: ln Immigrants ln Incoming trips

Weight by connectivity? — Yes — Yes — Yes — Yes
est. s.e. est. s.e. est. s.e. est. s.e.

Linear OLS: Countries with capital city north of the Tropic of Cancer
ln Mobility/cap. −13.9 (2.40) −15.7 (2.33) −16.5 (2.23) −14.6 (1.74)
# 88 88 88 88
'2 0.280 0.353 0.373 0.416

Linear OLS: Countries with capital city south of the Tropic of Capricorn
ln Mobility/cap. −16.6 (6.87) −16.9 (6.06) −19.7 (15.7) −22.3 (10.5)
# 10 10 10 10
'2 0.339 0.513 0.130 0.390

Linear OLS: Countries with capital city between the Tropics of Cancer and Capricorn
ln Mobility/cap. −3.70 (3.33) −11.9 (3.64) −15.8 (3.77) −20.1 (3.92)
# 86 86 86 86
'2 0.00739 0.0829 0.104 0.197

Robust standard errors in parentheses to the right of each coe�cient estimate.

A7 Arrival time regressions with alternative, all-origins weights on
incoming trips

Table A5 reanalyzes the weighted ‘incoming trips’ regressions in main-text Table 1 and Appendix Table A4
using an alternative weight. The preferred weights in Table 1 and Appendix Table A4 use the “leave-one-
out” centrality (_1), omitting the top origin country from the eigenvector calculation in order to reduce the
dependence on travel with one neighbor. The alternative measure calculates the eigenvector centrality
using all origins, including the top origin country (_0). The results are qualitatively similar across the
di�erent versions of the weights.

A8 Alternative 2009 H1N1 influenza mortality estimates by Da-
wood et al.

Table A6 repeats the analysis of the bivariate relationship between mobility measures and 2009 H1N1
in�uenza mortality using the estimates of Dawood et al. (2012). The results are qualitatively similar
to those in the main text using the mortality estimates of Simonsen et al. (2013): Greater exposure to
international mobility is strongly associated with lower �nal mortality. Estimates using the two di�erent
measures of mortality are not strictly comparable because Dawood et al. (2012) estimate not only mortality
due to respiratory illness but also to cardiovascular illness.

A9 Survival analysis for pandemics of 1957, 1918, and 1889

Table A7 shows regression tables for the relationship between �nal mortality and arrival date for the
pandemics of 1957, 1918, and 1889, where the linear regression speci�cations in the main text are replaced
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Appendix Table A4: Influenza 2009: International mobility and the timing of pandemic ar-
rival, with per-capita mobility exposure

Dep. var.: Day of pandemic arrival
Mobility measure: ln Immigrants/capita ln Incoming trips/capita

Connectivity weights? No Yes No Yes
est. s.e. est. s.e. est. s.e. est. s.e.

Linear OLS
ln Mobility/cap. −11.6 (3.56) −13.8 (3.23) −11.6 (3.21) −11.3 (2.64)
# 179 179 179 179
'2 0.0533 0.126 0.102 0.146
Days of delay associated with mobility reduction
50% reduction 8.01 (2.47) 9.54 (2.24) 8.03 (2.22) 7.83 (1.83)
90% reduction 26.6 (8.2) 31.7 (7.44) 26.7 (7.39) 26.0 (6.07)

Survival regression: Loglogistic accelerated failure time
ln Mobility/cap. −0.0725 (0.0264) −0.0976 (0.0249) −0.0735 (0.0229) −0.0836 (0.0197)
W 0.293 (0.0165) 0.283 (0.0154) 0.289 (0.0158) 0.281 (0.0149)
# 179 179 179 179
Days of delay associated with mobility reduction
50% reduction 4.64 (1.73) 6.30 (1.66) 4.71 (1.51) 5.37 (1.3)
90% reduction 16.3 (6.47) 22.7 (6.45) 16.6 (5.63) 19.1 (4.96)

Observations are countries. Robust standard errors in parentheses to the right of each coe�cient estimate. Constant term included
but not shown. In the loglogistic survival regressions, W is the scale parameter such that the survivor function is ( (C ) ≡ (1 +
(_C )1/W )−1 and _8 ≡ 4−V×ln(mobility/cap.) . ‘Immigrants’ is the average annual number of immigrants to each country during 2005–
2010. ‘Incoming trips’ is the number of people arriving in each country, for any duration of stay, in 2011.

Appendix Table A5: Influenza 2009: International mobility and the timing of pandemic ar-
rival, with all-origins weights

Dep. var.: Day of pandemic arrival
Connectivity weights? Yes

Mobility measure: ln Incoming
trips

ln Incoming
trips/cap.

est. s.e. est. s.e.
Linear OLS
ln Mobility −14.1 (1.75) −11.1 (2.77)
# 184 179
'2 0.225 0.124
50% reduction 9.80 (1.22) 7.68 (1.92)
90% reduction 32.5 (4.04) 25.5 (6.38)

with survival analysis—the loglogistic accelerated failure time model. The speci�cation in the main text
implicitly assumes a constant hazard rate; these regressions in the Appendix allow for a rise then fall in
the hazard rate over time. With this change, the �ndings remain qualitatively identical to those in the
main text. There is no statistically signi�cant bivariate relationship between �nal mortality and arrival
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Appendix Table A6: Influenza 2009: Mortality: linear, Dawood et al. mortality

Dep. var.: ln Final mortality per 100,000
Mobility measure: ln Immigration per cap. ln Arrivals per cap.

Connectivity weight: No Yes No Yes
est. s.e. est. s.e. est. s.e. est. s.e.

ln Mobility/cap. −0.0846 (0.0307) −0.0758 (0.021) −0.0839 (0.0185) −0.0603 (0.0142)
# 185 185 185 185
'2 0.0561 0.0763 0.108 0.0863
Mean mortality 3.31 (0.114) 3.31 (0.114) 3.31 (0.114) 3.31 (0.114)
50% reduction 0.200 (0.0746) 0.178 (0.0509) 0.198 (0.0450) 0.141 (0.0340)
90% reduction 0.711 (0.284) 0.631 (0.191) 0.704 (0.171) 0.492 (0.124)

Robust standard errors in parentheses to the right of each coe�cient estimate.

time in the pandemics of 1957, 1918 (fall wave) and 1889. When the spring and fall waves of 1918 are
considered as a single pandemic event, as in the linear regressions in the main text, longer delays in
arrival are associated with higher �nal mortality with high statistical signi�cance.
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Appendix Table A7: Influenza 1957, 1918, and 1889: Start date versus �nal mortality, survival
analysis speci�cation

(a) In�uenza 1957, countries: Accelerated failure time, loglogistic

Dep. var.: Date of arrival
Mortality measure: 1957 only 1957–1959

est. s.e. est. s.e.
ln Mortality −0.0204 (0.0460) −0.0243 (0.0545)
W 0.167 (0.0295) 0.165 (0.0272)
# 34 35

(b) In�uenza 1918, countries: Accelerated failure time, loglogistic

Dep. var.: Date of arrival
Wave: Fall 1918 only Spring/Fall 1918

est. s.e. est. s.e.
ln Mortality 0.0573 (0.0981) 0.200 (0.0692)
W 0.424 (0.0688) 0.305 (0.0487)
# 45 50

(c) In�uenza 1889, cities: Accelerated failure time, loglogistic

Dep. var.: Date of arrival
Date: Start date Peak mortality date

est. s.e. est. s.e.
ln Mortality 0.00741 (0.0486) −0.00951 (0.00819)
W −3.25 (0.251) −3.76 (0.132)
# 34 87

Robust standard errors in parentheses to the right of each coe�cient estimate. Constant term included but not shown.
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