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ABSTRACT
Around half of children in low-income countries have elevated blood lead levels. What role does lead 

play in explaining low educational outcomes in these settings? We conduct a new systematic review 

and meta-analysis of observational studies on the relationship between lead exposure and learning 

outcomes. Adjusting for observable confounds and publication bias yields a benchmark estimate of  a 

0.12 standard deviation reduction in learning per natural log unit of blood lead. As all estimates are 

non-experimental, we present evidence on the likely magnitude of unobserved confounding, and 

summarize results from a smaller set of natural experiments. Our benchmark estimate accounts for 

over a fifth of the gap in learning outcomes between rich and poor countries, and implies moderate 

learning gains from targeted interventions for highly exposed groups (≈ 0.1 standard deviations) and 

modest learning gains (< 0.05 standard deviations) from broader public health campaigns.
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1 Introduction

Over 600 million children in low- and middle-income countries have elevated blood
lead levels (Rees and Fuller, 2020). This includes just 3 percent of children in high-
income countries, and more than half of children in low-income countries (Figure
A1).1

Children’s scores on standardized tests of reading and mathematics in these same
countries typically fall between one and three standard deviations below the level of
performance of children in high-income settings (Angrist et al., 2021). The World
Bank and UNESCO’s modeled estimates suggest 91 percent of children in low-income
countries cannot read and comprehend a simple text by age 10, compared to just 8
percent in high-income countries (Azevedo et al., 2022).

Are these two broad patterns connected? In this paper we explore the evidence
of a causal link between lead exposure and children’s learning outcomes. Since the
relationship between lead and cognition varies with level of exposure, we place par-
ticular emphasis on the likely impacts at blood-lead levels observed among children
in the developing world. We then ask what potential gains there are to learning from
feasible interventions to reduce lead exposure in low- and lower-middle income coun-
tries. What proportion, if any, of the large learning gaps between countries might be
explained by lead exposure? Further, is lead abatement a viable and cost-effective
strategy to improving education performance?

We approach these questions by revisiting and extending existing meta-analyses
of studies on the relationship between measures of blood lead and child learning
outcomes. Much of the literature on the effects of lead on cognitive development has
focused on impacts on IQ. A key contribution of our study is in additionally gathering
effects on standardized test scores for reading and mathematics. We show that the
magnitude of the association between blood lead levels is fairly consistent across
these alternative outcomes. On average, we estimate that a one (natural) log unit
increase in blood lead is associated with a −.23σ change in reading and mathematics
test scores. Ninety-five percent of estimates are between −.28 and −.18σ.

We then review how inclusion of controls for parental characteristics and so-
cioeconomic status changes the association between lead and cognitive outcomes in

1These figures are derived from estimates produced by IHME/UNICEF (Rees and Fuller, 2020),
who define elevated blood lead levels as exceeding the US CDC reference value of 5 micrograms
per deciliter (the CDC lowered its reference value to 3.5 micrograms in 2021). We combine these
exposure rates with population estimates from the UN (United Nations, Department of Economic
and Social Affairs, Population Division, 2019).
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associational studies. Standard controls typically, but not uniformly, lead to smaller
associations with magnitudes that remain relevant for public health policy. We also
assess the importance of publication bias in the literature. Standard tests based
on funnel plots suggest publication bias may exaggerate the magnitude of the rela-
tionship between lead and cognitive outcomes. Lower-powered studies report larger
effects, and an anomalous share of p-values fall just below conventional significance
levels. However, standard approaches to correcting for this bias only moderately
reduce our estimated average effect.

Accounting for study characteristics and correcting for publication bias, we find
that a (natural) log unit increase in blood lead is associated with a −.12σ decrease
in reading and mathematics scores in the developing world. Magnitudes are similar
for effects on IQ, reading, and mathematics scores.

While all of these estimates are based on observational studies, we also review the
smaller number of quasi-experimental studies, all of which show larger effects for IV
estimates than OLS estimates. By contrast, bounding procedures based on coefficient
stability imply that unobserved heterogeneity could explain roughly one-third of the
OLS association.

In order to quantify the overall potential learning gains from eliminating lead
exposure, we combine our estimates of the association between lead and learning,
with estimates of the prevalence of lead poisoning, and estimates of the effect of
interventions targeting lead exposure. If given a causal interpretation, the overall
results of this meta-analysis imply that reducing children’s mean blood lead levels
from average existing levels in LMICs (5.3 µg/dL) to high-income country levels
(0.5µg/dL in the US according to the EPA) would close 21 percent of the learning
gap between developing and developed countries for which we have data. Projects
designed to reduce acute lead exposure at specific polluted sites have reduced mean
blood lead levels by 1.35 - 2.3 log units, implying a 0.16 to to 0.26σ increase in
learning for affected children. Projects targeting chronic low-level lead exposure in
wider populations have reduced blood lead levels by 0.34 - 0.42 log units, imply
learning gains of 0.04 to 0.05σ. Even these smaller effect sizes based on conservative
assumptions about the effect of broad public health initiatives offer a potentially
cost-effective means to improve learning outcomes (ignoring health benefits), if these
programs can be implemented effectively and cheaply at scale in low- and middle-
income countries.
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2 Meta-analytic methods

We review the literature on the relationship between lead poisoning, measured through
blood testing, and learning outcomes. We focus on studies that measure some kind
of cognitive test outcome, and also have blood lead level measures from the same
individuals, whether contemporaneously or from different points in time.

2.1 Search strategy

Our search strategy is summarised in the flowchart in Figure A2. We seek to identify
all studies measuring the correlation between blood lead levels and IQ or test scores.
We start with three recent systematic reviews. The first finds 27 papers published
between 2010 and 2020 that measure child (aged 0–19 years) blood lead levels and
‘full-scale’ IQ scores (Galiciolli et al., 2022)2, of which 9 had at least one eligible
result according to the criteria described in the next section. The second reviews
8 papers published between 2000 and 2020, focused on effects on IQ, with a study
population under the age of 12 years (Heidari et al., 2022), of which 7 had at least one
eligible result. The third reviews 34 studies in low-and middle-income countries with
measures of lead exposure and a standardized measurement of neurodevelopment,
from which we extract an additional 7 studies (Heng et al., 2022). In addition, we
conducted our own systematic search using Google Scholar. We search for articles
with the following terms in their title: (lead) AND (exposure OR blood OR level)
AND (intelligence OR intellectual OR cognitive OR cognition OR education OR
achievement OR IQ OR score OR math OR reading OR school). From this we found
951 potential results. We also found several studies through citation searching from
an initial relevant paper. These two methods identified an additional 24 papers that
had at least one result fulfilling the eligibility criteria described below. This led to a
combined total of 47 unique studies.

2.2 Extracting estimates from studies

Two researchers independently extracted estimates from studies following the same
protocol, with disagreements resolved by a third researcher. We extract any coeffi-
cient relating maternal or child blood lead levels to any of three cognitive outcomes

2Full-scale IQ scores are the average of scores on five distinct abilities: Verbal Comprehension,
Visual Spatial, Fluid Reasoning, Working Memory, and Processing Speed.
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- IQ, math skills, or reading skills- on the full sample. We include estimates from
sub-samples where subgroups are defined according to blood lead level. We focus
on full-scale IQ rather than its separate components (performance and verbal IQ)
where those are reportedly additionally. We include studies that use tests that are
designed as general intelligence or IQ tests, such as the General Cognitive Index
(Schnaas et al., 2006; Cooney et al., 1989), the British Ability Scales (Fulton et al.,
1987), and the Kohs Block Design Test (Vega-Dienstmaier et al., 2006). We focus on
general reading and math composite outcomes rather than any individual subcom-
ponents. We exclude estimates which are entirely a combination of other extracted
estimates. We exclude results which include blood measures for multiple ages in a
model separately, as this has a different estimand: the effect of exposure at a particu-
lar age, relative to exposure at another age. We exclude estimates where the outcome
is a binary re-coding of a continuous outcome, and a result using this continuous out-
come has been extracted. We exclude estimates where the outcome was measured
before the age of three. We exclude results of models which interact lead exposure
with other covariates. For results to be eligible, studies need to report - or provide
the information to calculate - an effect size, a standard error or confidence interval,
a measure of blood lead exposure, and the standard deviation of the outcome. We
also discarded results with less than 20 observations. After discarding studies that
did not meet these criteria, we are left with 286 estimates from 47 unique studies.

We also code a number of other characteristics for each study: the country where
the study was carried out; the specific outcome type (IQ, reading, or mathematics);
the standard deviation of this outcome in the sample; the functional form for the
estimation of the effect of blood lead on the cognitive outcome; the mean blood lead
level of the sample3; whether exposure for a result was based on more than one blood
measurement; the average age at blood sampling; the average age at outcome testing;
and which variables were adjusted for in the analysis.

As we have multiple estimates from most studies, we account for the resulting
dependence between results using robust variance estimation (Hedges et al., 2010),
imputing a conservative value of 1 for the correlation between results from the same
study, meaning that studies which contributed more results were not overweighted
(Fisher and Tipton, 2015).

3Studies report averages as arithmetic means, geometric mean, and medians. We convert me-
dians to arithmetic means using the method in Wan et al. (2014). Studies which report both
arithmetic means and geometric means show the former are generally slightly larger as a result of
the skewed distribution of blood lead levels. However, differences are small and so we treat both
types as equivalent in analysis.
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2.3 Harmonizing variables across studies

We follow the guidelines provided by the Cochrane Handbook for Systematic Reviews
of Interventions (Higgins and Green, 2008) to calculate effect sizes and standard
errors where these are not given in the required form. Where studies give effects as
correlation coefficients, these are converted to raw regression coefficients using the
formula:

Effect Size = Correlation Coefficient × σy

σx

(1)

where σy and σx denote the standard deviation of the outcome (IQ or test scores, in
our case) and the independent variable (blood lead levels), respectively.

Where studies only provide p-values for effect sizes, we convert these to standard
errors using the formulas:

Standard Error = Effect Size/z (2)

where z is calculated using the inverse CDF of the p-value divided by 2.

Where studies report only that a p-value is less than a particular value, we impute
half the threshold value (e.g if a paper were to report p < 0.01, we would impute p
= 0.005). For studies which do not report sample standard deviations, we impute
population standard deviations where available. One study (Shadbegian et al., 2019)
has as its outcome the percentile in which the child placed in math and reading tests;
we convert this to a z-score, assuming test scores to be normally distributed.

2.4 Re-expressing coefficients from log and linear models

Existing meta-analyses have documented a roughly log-linear relationship between
blood lead levels and IQ, whereby the natural logarithm of blood lead levels is pro-
portional to IQ scores (see for example Figure 1).4 Letting X denote a vector of

4In Figure 1 we collect published dose-response curves from 13 different studies. These include
Lanphear et al. (2005) who combine data from seven different longitudinal studies that track a total
of 1,333 children followed from birth or infancy until 5–10 years of age. Rothenberg and Rothenberg
(2005) directly compare a linear and log-linear specification, finding a substantially better fit with
the log-linear specification.
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individual and family control variables, and subscript i denote individuals, this log-
linear specification is our reference benchmark in what follows:

Yi − µy

σy

= αln(BLLi) +Xiγ + εi (3)

where Yi represents an individual’s IQ or test score on mathematics or reading tests.

However, individual studies use a range of functional forms to model the rela-
tionship between blood lead exposure and the cognitive outcome. Some report a
regression coefficient for a linear increase in blood lead, some report the coefficient
for a log-unit increase—with bases of 2, e, or 10—and some report the difference be-
tween two groups defined by a value or range of values for blood lead levels. In order
to compare the effects of lead exposure across studies, we first need to harmonize
these results. Based on Lanphear et al. (2005) and other studies shown in Figure 1,
we assume that the true relationship between blood lead and cognitive outcomes is
log-linear, although we allow more flexibility in our meta-regression by including a
linear term for a study’s mean blood lead level. In order to compare across studies,
we convert all effect sizes into natural log units. We do this using a ‘re-expression
algorithm’. All such algorithms are necessarily imperfect. Linakis et al. (2021) show
that re-expressions are likely to be biased where the distribution of the underlying
variable has a skewed distribution, which is true in our case. In Table A3 we use
microdata from the US NHANES study and three other studies in our review, to
estimate both logarithmic and linear specifications using the same data, and com-
pare the performance of three algorithms: Linakis et al. (2021), Rodríguez-Barranco
et al. (2017), and Dzierlenga et al. (2020). The Linakis et al. (2021) method has the
lowest root mean squared error, and so we proceed with this algorithm.
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Figure 1: Log-linear dose-response curves

Note: This figure reproduces dose-response curves published from the individual studies named.
They have been standardized and centred to converge at 5 µg/dL, to allow gradients to be
compared. Curves from Edwards et al, 2013, refer to those for non-Hispanic Black children.

We first convert studies which compare discrete low and high exposure groups to
a linear equivalent. Studies define “low” and “high” exposure groups using different
thresholds. We therefore convert these effects to linear estimates by dividing the
estimated effect size by the difference in average BLL between the high and low
exposure groups.5

5Where results are from models with a wider range of covariates which excludes observations
without selected variables, the mean blood lead level and outcome standard deviation may be
slightly different to the values for the sample; however, these differences are likely to be negligible.
For studies which express effects as the difference between two groups defined by a range of blood
lead levels, we require mean blood lead levels for the two groups. Where this is not given, we impute
these values where possible. Where the range of a group is only 1 µg/dL, we take the midpoint;
for example, for a group with blood lead levels 4 to 5 µg/dL, we impute a mean of 4.5 µg/dL
(Shadbegian et al., 2019; Edwards et al., 2013). For 7 studies, we simulate log-normal distributions
using the overall mean and standard deviation given for the study sample, and then approximate
group means given this simulated distribution (Liu et al., 2013; Surkan et al., 2007). For another we
instead simulate a normal distribution as this better fits the reported moments of the data (Rasoul
et al., 2012).
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Following Linakis et al. (2021), we calculate a conversion factor I as a function
of the desired logarithmic base α and median blood lead level (BLL).6

I = αlogα(meanBLL)+0.5 − αlogα(meanBLL)−0.5 (4)

We then multiply coefficients estimated from linear models by this conversion fac-
tor to obtain an estimate of what the coefficient would have been under a logarithmic
model.

Overall, we see larger effects for estimates from linear models than from logarith-
mic models, suggesting that some error may still result from this approximation. In
order to mitigate against this, we adjust for whether a result was reported in a non-
logarithmic form in our metaregression analysis, described below. We also include
an interaction with the average blood lead level of the sample, as the magnitude of
error will be a function of this variable.

6While this algorithm performs best using the median of the exposure distribution, we find it
still performs well using arithmetic means, the most commonly reported average in our studies.
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2.5 Adjustments for publication bias

A common concern in meta-analyses, particularly those involving observational stud-
ies, is publication or reporting bias. If only statistically significant results are re-
ported, we will produce a biased estimate of the true average effect. In our case,
funnel plots do indicate that publication bias may be an issue in this literature, with
relatively few statistically insignificant results (Figure A4). Specifically, results are
asymmetrically distributed, with “missing” results in the region of null or even pos-
itive associations, and the distribution of z-statistics shows a spike just below the
significance threshold. The former pattern is confirmed by an Egger et al. (1997)
asymmetry test, and appears not to be caused by errors arising from the re-expression
algorithms (Figure A5).

There are several approaches to adjusting for publication bias, none of which
are perfect. For our main estimate we include a control for the variance of each
estimate, following Stanley and Doucouliagos (2014). We also show in Appendix
Table A4 that adjusting our uncontrolled result using three other approaches, which
generally only moderately weaken the effect. The simplest approach is the Egger
regression intercept, which includes the standard error as a control variable. The
Egger approach is shown by Stanley and Doucouliagos (2014) in simulations to be
overly biased towards zero, and that a better approach (‘PET-PEESE’) is to use
a nonlinear quadratic approximation to the true unknown nonlinear relationship
between effect sizes and effect size variance, as we do in our main result. The trim-
and-fill approach estimates the number of results ’missing’ due to publication bias
and impute these results. Finally, the p-uniform* method makes use of the principle
that the p-values of estimates should be uniformly distributed at the true effect
size (Aert and Assen, 2018). We can also show the sensitivity of average effects to
different assumptions about the degree of selection on statistical significance (Copas
and Shi, 2001). Results from this method, shown in table A6, indicate that treatment
effects remain statistically significant with a range of reasonable assumptions about
the potential degree of selection of estimates on statistical significance (Figure A6).

2.6 Meta-regression

Our focus in this review is estimating the effect of lead exposure on learning in
developing countries. Our primary estimate of the average effect is therefore the
constant term β0 from a meta-regression in which an observed effect size θ̂ij for
result i in study j is related to m result covariates, 1 through M . Estimates are
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weighted inversely to their variance, and we use the Hedges et al. (2010) estimator
which is robust to unknown correlation between multiple estimates from the same
study.

θ̂ij = β0 + β1X1ij + β2X2ij + ...+ βmXMij + ϵij (5)

The independent variables correspond to characteristics of the underlying stud-
ies. These are (i) whether the original result modelled the effect of blood lead on the
cognitive outcomes using a logarithmic specification or not; (ii) the average blood
lead level for the result sample, centred by the average of mean childhood BLLs for
the 34 countries estimated by Ericson et al. (2021); (iii) an interaction between these
two effects; (iv) an indicator for whether BLL was measured contemporaneously to
the outcome measurement, as the highest BLL measurement among several taken
for an individual, or prenatally, rather than as an average over several measurements
over a lifetime or as a ’lagged’ measurement during an earlier potentially critical
developmental period; (v) an indicator variable for studies from high income coun-
tries; (vi) an indicator for results using IQ rather than reading or mathematics test
scores as the outcome variable; (vii) an indicator for results which fail to control
for parental education; (viii) an indicator for results which fail to control for fam-
ily income or socioeconomic status;7 (ix) the variance of the estimate, which may
vary systematically with effect size in the presence of publication bias. All of these
variables are coded such that a value of zero corresponds to our preferred specifi-
cation: i.e., effects on reading or mathematics in a low- or middle-income country,
in a context with average BLL, using a log-linear specification, where exposure is
calculated as a lifetime average or from an earlier period than the time of outcome
measurement, with controls for household income and parental education. Note that
no single result fulfils all of these criteria.

7We define this kind of control broadly: for example, we code results which adjust for the
Home Observation for Measurement of the Environment, which measures the physical and social
environment of children, as controlling for this.
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3 Meta-analysis results

3.1 Study characteristics

From the total of 47 studies included in our meta-analysis, 17 are from the United
States, 12 are from other high-income countries (Australia, Canada, Italy, New
Zealand, South Korea, Taiwan, and UK), and 18 are from low or middle-income
countries (Brazil, China, Colombia, Ecuador, Egypt, India, Malaysia, Mexico, Nige-
ria, Peru, Pakistan, and the Philippines). All except one study are observational
(the exception Aizer et al. (2018) employs an instrumental variable design), however
many are longitudinal.

The median sample size in our estimates is 389. The median age at blood lead
testing is four years old, and at cognitive testing is eight years old. The average
blood lead level is 7.06µg/dL. The majority of results have controls for parent IQ or
education and family background or income (Table 1).

Table 1: Result characteristics

Mean Median SD
Age at Blood Test 4.70 4.00 3.00
Age at Outcome 7.74 8.00 2.70
Mean blood lead 7.06 6.70 4.31
Sample Size 13,869.04 389.00 40,211.86
Binary Controls
Used logarithmic specification 0.24 0.00 0.43
Controlled for parent IQ or ed 0.69 1.00 0.46
Controlled for family income or wealth 0.61 1.00 0.49
Used average or lagged BLL measure 0.62 1.00 0.49
Outcome was Maths or English 0.40 0.00 0.49
From Low/Middle Income Country 0.37 0.00 0.48
Observations 286

Note: This table shows descriptive statistics for the 286 estimates from 47 studies in our
meta-analysis.

3.2 Average effects

Overall, we find that a one log unit reduction in BLL is associated with a −.12 stan-
dard deviation improvement in test scores. As discussed in Section 2.6, our preferred
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meta-regression specification adjusts for the choice of original model specification,
and control variables in each study, and is shown in Table 2.

To explore the influence of specific sets of controls systematically, we report a
specification curve a la Simonsohn et al. (2014). Figure 2 displays the average effect
size from a meta-analytic regression controlling for each of all possible combinations
of study characteristics listed above. All specifications yield a negative relationship
between (log) BLL and learning outcomes, though some are statistically insignificant.
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Table 2: Meta-regression of effect size on study characteristics

(1) (2) (3) (4)
Constant -0.227*** -0.225*** -0.154*** -0.115

(0.025) (0.026) (0.021) (0.100)
Potential confounds and sources of bias: ref. ref. ref.
Effect variance (for pub.bias) -0.139 -0.143 -0.137

(0.488) (0.484) (0.462)
No control for parent ed/IQ -0.173*** -0.167**

(0.058) (0.072)
No control for family income 0.002 0.009

(0.061) (0.071)
Harmonization of specification and context: ref.
Not logarithmic 0.000

(0.057)
Mean BLL 0.000

(0.007)
Not log spec X Mean BLL -0.008

(0.011)
Exposure: not average or lag -0.036

(0.047)
Outcome (IQ) 0.015

(0.061)
High income country -0.046

(0.063)
N (Estimates) 286 286 286 286
N (Studies) 47 47 47 47

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. We use the Hedges
et al. (2010) estimator to account for dependence between multiple estimates from the same study.
The dependent variable in each case is the standardized effect size of one log unit increase in lead
exposure. The constant represents the average effect. Column 1 presents the unadjusted average.
Column 2 includes the PET-PEESE (Stanley and Doucouliagos, 2014) adjustment for publication
bias. Column 3 includes controls for potentially confounding study-level characteristics - so the
constant represents the average for studies that estimate a log-linear relationship, in a sample with
average blood lead levels, with controls for parental IQ or education, and with a lagged measure
of blood lead. In column 4, we additionally include controls to adjust the constant to studies in
low or middle-income country settings, and focused on reading or mathematics test scores rather
than IQ.
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We also show our results graphically in the forest plots in Figures 3 and 4. These
figures show the weighted average of effect sizes across studies for our two main out-
comes, IQ and math/reading test scores, respectively. The mean of the pooled effect
is -0.22 for results with IQ as the outcome, -0.20 for studies with math scores, and
-0.24 for studies with reading scores.8 Unlike our meta-regression estimate, however,
these averages are unadjusted for study characteristics and potential publication bias.

Results are robust to dropping each individual study sequentially (Figure A3),
and also to dropping studies in which we had to convert or impute different statistics
(Table A6). For studies in which we use the population rather than sample standard
deviation in outcomes, effects are 0.04 standard deviations larger, but not statistically
significantly different.

3.3 Heterogeneity

Our main meta-analysis shows substantial heterogeneity between studies. The I2

statistics (the share of variability in effect sizes not caused by sampling error) from
Figures 3 and 4 are all well above the 75% rule-of-thumb indicating “significant
heterogeneity” (Higgins et al., 2003).

As we saw in Table 2 however, just one covariate was statistically significantly cor-
related with study effect size - whether that study controlled for parental education
or IQ. The control for publication bias (the effect variance) also has a large coeffi-
cient, but is imprecisely estimated, and does not create a large shift in the overall
mean effect size. We see no statistically significant differences for effects on math or
reading compared with IQ, for high-income countries compared with middle-income
countries, or between studies according to the timing of blood lead measurement, i.e.,
concurrent versus lagged or averaged over measurements at multiple time points.

We also show each of these controls individually in bivariate regressions in Table
A5. While controlling for most of these study characteristics individually only alters
the overall effect of log BLL on learning outcomes modestly, the combined effect
of controlling for all of them is quite dramatic. The overall estimate of the BLL-
learning link falls from −.23σ in column 1 with no controls to -0.13σ with various
controls intended to adjust for potential confounding, publication bias, and differ-
ences in measurement (Table 2). Finally, because our ultimate interest is in reading

8Note that here we show results collapsed to their mean for each study where there are multiple
estimates from a study. These results are similar to those obtained using robust variance estimation
accounting for unknown correlation between estimates within studies (Hedges et al., 2010).
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Figure 3: Effects of lead on IQ
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Note: This figure shows average effects for each study. In cases where more than one effect is
reported per study, we show here the mean value. The estimated overall effect size (of -0.22 with

no moderators) based on these mean effect sizes is only marginally different to the effect size
estimated from all individual estimates, with a robust variance estimator to account for unknown

dependence within studies.

19



Figure 4: Effects of lead on reading and mathematics assessments
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Note: This figure shows average effects for each study. In cases where more than one effect is
reported per study, we show here the mean value. The estimated overall effect size (of -0.20 for
math and -0.24 for reading with no moderators) based on these mean effect sizes is only slightly

different to the effect size estimated from all individual estimates, with a robust variance
estimator to account for dependence within studies.
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and mathematics scores in developing countries, in column 4 we also control for an
indicator of studies in high-income countries and results using IQ as the outcome
variable, yielding an estimate of −.12σ.

3.4 Comparing our results to other reviews

How do our estimates compare to prior meta-analyses? Lanphear et al. (2005) esti-
mate that an increase from 2.4 µ/dL to 30 µ/dl was associated with a 3.9 decrease in
IQ, equivalent to a 0.18 standard deviation change per log unit increase in exposure.
An earlier review found that a doubling of lead (from 10 to 20 µg/dl blood lead or
5 to 10 ug/g tooth lead) was associated with a 1 to 2 point reduction in IQ. This
is equivalent to around a 0.14σ reduction per log unit of lead (Pocock et al., 1994).
Heidari et al. (2022) find that the standardised difference in mean IQ scores between
high (>10µg/dL) and low exposure groups (<10µg/dL) is 0.541σ. Similarly, Galici-
olli et al. (2022) find a difference between exposed and unexposed groups of 7.37 IQ
points (equivalent to approximately 0.49σ). Heng et al. (2022) provide a narrative
review but not a meta-analytic average effect size. Our results for effects on IQ are
therefore well within the range of other reviews, whilst we also extend our review to
reading and mathematics test scores.
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4 Assessing the role of unobserved confounders

Since observational studies may suffer from omitted variable bias, what reason is
there to believe the associations we report above reflect a causal relationship? One
piece of evidence in support of a causal interpretation is that experimental stud-
ies conducted with animals show significant impacts of lead exposure on cognitive
function (see for example Gilbert and Rice (1987) and Tena et al. (2019)). Further-
more, though the mechanisms by which lead exposure causes cognitive impairment
are still not fully understood, lead has been shown to interfere with several processes
involved in neurological development and functioning, adding credibility to a causal
interpretation (Ramírez Ortega et al., 2021).

While animal studies and the identification of neurological mechanisms lend cre-
dence to the existence of some causal effect, they don’t tell us much about the
magnitude of this effect in humans, or whether observational associations are biased
by unmeasured confounders. In this section we present two sources of evidence on
potential bias which can help us pin down the magnitude of the true causal effect.
First, we discuss studies focused on natural experiments in lead exposure. Second, we
assess the sensitivity of observational estimates to selection on unobserved variables
using the coefficient stability method (Oster, 2016).

First, a handful of natural experiments with a reasonable claim to causality have
been published on the lead-cognition relationship, and these studies allow us to
directly compare causal with observational estimates. In Table 3 below we collect
observational ordinary least squares (OLS) and quasi-experimental instrumental vari-
able (IV) estimates from five studies.9 In all cases, the IV estimate is larger than
the OLS estimate, sometimes substantially so. Aizer et al. (2018) find results two
to three times larger in the IV specification than the OLS one. They argue that the
IV results are larger due to measurement error attenuating the OLS estimates. An
alternative explanation for seeing larger coefficients for IV estimates than OLS esti-
mates is that they estimate treatment effects for slightly different populations. OLS
estimates the average treatment effect across the entire population, whereas the IV
estimates the local average treatment effect only amongst the subgroup of the popu-
lation for whom the IV shifts their behaviour. We don’t, however, have a compelling
reason to believe that treatment effects would necessarily be different in the different

9We don’t include all of these studies in our meta-analysis as they don’t all have direct blood
lead measures. We do include the one study that does have blood lead measures, which uses a lead
remediation program in Rhode Island as a source of exogenous variation, showing that instrumental
variable estimates are larger than observational estimates (Aizer et al., 2018).
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sub-populations affected and unaffected by the instruments in these contexts. Aizer
et al. (2018) report four estimates from linear specifications (effects per unit change
in blood lead), for two outcomes (reading and math) and two different instrucmental
variable strategies. Applying the re-expression algorithm we describe in section 2.4,
these results are equivalent to an average effect size of -0.13 standard deviations per
natural log unit of blood lead, very close to our central meta-analytic estimate of
−.12 standard deviation.

Clay et al. (2019) use an instrumental variable strategy based on the layout
of the 1944 Interstate Highway System Plan to estimate the relationship between
county soil lead levels and cognitive difficulties amongst students. They find a small
and statistically insignificant relationship in the observational OLS specification, but
statistically significant effects with the IV specification. Counties with a highway
recommended in the 1944 plan were 17 percent more likely to have above median lead
concentrations in topsoil. In the IV specification, counties with above median soil
lead concentrations had 4 percentage points higher levels of children with cognitive
difficulties (10 times larger than in the OLS specification).

Table 3: IV Estimates Produce Larger Effects than OLS Estimates

Author Outcome OLS IV Lead
measure Instrument

Aizer
et al 2018 Reading 0.026

(0.002)
0.073

(0.037) Blood Nearby home
lead remediation

Aizer
et al 2018 Math 0.017

(0.001)
0.030

(0.034) Blood Nearby home
lead remediation

Clay
et al 2019

Cognitive
Difficulty

0.0029
(0.004)

0.0414
(0.019) Soil 1944 Interstate

Highway Plan
Grönqvist
et al., 2020 GPA 0.164

(.030)
0.256

(.0769) Moss Leaded petrol
ban

Feigenbaum
et al., 2016 Homicides 0.219

(0.064)
1.022

(0.257)
Water
pipes

Distance to
lead refinery

Note: Results for Aizer et al (2018) take from Table 8, for Clay et al (2019) taken from Table 3,
for Grönqvist et al. (2020) from Table 6., and for Feigenbaum et al (2016) from Table 2.

Grönqvist et al. (2020) study the phase-out of leaded petrol in Sweden in 1980-81.
They show that reductions in lead measured in nationwide moss samples is associated
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with improved test scores. They find IV estimates that are around 50 percent larger
than OLS estimates.

A similar pattern of larger effect sizes in quasi-experimental estimates than in
observational estimates has also been shown in studies looking at other outcomes
besides test scores, including school suspensions and juvenile detention (Aizer and
Currie, 2019) and homicide rates (Feigenbaum and Muller, 2016).

Other quasi-experimental studies also show causal effects of lead exposure, though
without providing a direct comparison of observational and causal estimates. Hollingsworth
et al. (2022) focus on the switch to unleaded petrol in US Nascar motor racing in
2007. They estimate that removing the exposure of a school 1 mile from a race track
would be equivalent to increasing school spending per pupil by $750. Sorensen et al.
(2019) evaluate lead hazard control programs, finding that each percentage point
reduction in lead poisoning in early childhood led to 0.04 standard deviations higher
math scores and 0.08 standard deviations reading scores. Rau et al. (2015) study
the opening of a toxic waste dump in Chile in a difference-in-difference framework,
showing that attending schools closer to the site after it opened lowered test scores.
Higney et al. (2022) shows that water treatment in Scotland lead to improvements
in test scores only in areas with high prevalence of lead pipes.

Second, we assess the robustness of observational estimates to selection on both
observed covariates and proportional selection on unobserved covariates, based on the
stability of estimated coefficients and model fit (R-squared). Specifically, we follow
Oster (2016) in estimating the coefficient β⋆ that would result were we able to control
for unobserved confounders. This equation (6) requires that we make assumptions
about the proportional degree of selection δ on unobservables (typically set at equal
to selection on observables or 1), and about the maximum plausible value of the
model fit Rmax (typically set at 1.3 times the model fit in the fully adjusted model
R̃). Given these assumptions and our knowledge of the coefficients in the adjusted β̃
and unadjusted models β̊, and model fits of the adjusted R̃ and unadjusted models
R̊, we can calculate the coefficient β⋆.

β⋆ = β̃ − δ
(β̊ − β̃)(Rmax − R̃)

(R̃− R̊)
(6)

We identify 18 estimates (from 16 studies) in which both an unadjusted and
adjusted estimate is provided. Only six of these estimates (from five studies) also
report an R-squared which allows us to calculate the Oster-adjusted estimate. These
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estimates are reported in Figure 5. Amongst the six estimates for which we can
estimate adjustments for both observable and unobservable confounders, the average
reduction in the coefficient adjusted for observables is 14 percent, whereas the average
reduction for observables and unobservables is 33 percent.
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Figure 5: Selection on observed and unobserved variables
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Note: This figure shows the change in the coefficient in a regression of learning on blood lead
before (“unadjusted”) and after adjusting for observed covariates ("adjusted"), and proportional

selection on unobserved covariates (“Oster”). We show here estimates from all studies in our
meta-analysis that report both an adjusted and unadjusted estimate. We are only able to report
the Oster-adjusted estimates for the five studies that report the R-squared of their regressions.
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5 Policy simulations

In order to interpret these effects, we consider two benchmarks; first, what the effect
on learning would be of reducing current lead exposure in low and middle income
countries to the level in high-income countries. Second, the effect of different inter-
ventions to reduce blood lead, and what this implies for learning.

5.1 The effect of removing lead altogether

What would be the effect of reducing current lead exposure in low and middle income
countries to the level in high-income countries? A recent systematic review shows
that mean BLL levels (µbll) in 34 low and middle-income countries range from 1.7 to
9.3, with an unweighted average across countries of 5.3µg/dL (Ericson et al., 2021).
Levels for under 18 year olds in the US are around 0.5µg/dL (US EPA, 2015).

To simulate the effect of reducing BLL levels in each country to the U.S. level,
we follow Ericson et al. (2021) and assume a log-normal distribution of BLL within
each country. Thus for each country we calculate the mean of the log of BLL as

µ = ln

(
µ2
bll√

µ2
bll + σ2

bll

)

Then, because our preferred specification for the relationship between BLL and cog-
nitive scores is log-linear, we can calculate the effect on learning as:

Improvement in learning = β × (µ− 0.5)

where β is the average effect size from the meta-analysis above, e.g., −.12σ after
covariate adjustments.

To measure gaps in learning outcomes around the world, we rely on the harmo-
nized learning outcomes reported by the World Bank (Angrist et al., 2021), which
are normed to have a mean of 500 and standard deviation of 100 points.

Figure 6 shows the implied impact on the World Bank harmonized learning out-
comes for each of the 34 countries in the Ericson et al. (2021) sample. Using the
adjusted estimates of lead’s effect on learning from the meta-analysis (−.12) the in-
crements are meaningful, with a magnitude ranging from 4 to 31 points depending
on the country. The results suggest a major role for lead exposure in explaining
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learning gaps between rich and poor countries. As an example, the lowest scoring
country, the Democratic Republic of Congo, lies 250 points below the global mean of
500, and reducing BLL to 0.5µg/dL would improve scores by 29 points. On average
for these 34 countries, reducing BLL to US levels improves learning by 23 points,
equivalent to 21 percent of the 110 point learning gap to the global benchmark of
500 points on the World Bank scale.
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Figure 6: Simulated effect of eliminating blood lead on national learning outcomes
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Note: For each country we simulate the effect of reducing blood lead levels to 0.5 µg/dL, based on
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29



5.2 The effect of interventions to reduce blood lead

Reducing lead exposure altogether down to US levels may be unrealistic, at least in
the short-term. What kind of reductions are feasible? We review studies on four
classes of intervention: regulatory, educational, medical, and targeted environmental
interventions.

5.2.1 Regulation

The most important regulatory intervention has been the banning of leaded gasoline
or petrol, which has shown that large reductions in blood lead are feasible at low
cost in both developed and developing countries Angrand et al. (2022). Before-after
studies around leaded petrol bans have shown large reductions in blood lead in both
high and low-income countries, including in India (Singh and Singh, 2006), Kenya
(United Nations Environment Programme (UNEP), 2014), Pakistan (Manser et al.,
1990; Rahbar et al., 2002), and South Africa (Mathee et al., 2006). Whilst leaded
gasoline has already now been banned in every country in the world, there may still be
considerable room for increased regulatory action in other areas. Other regulatory
actions taken by the majority of OECD countries include regulations on lead in
water, air, food, batteries, food containers, and paint, with several countries having
additional regulations on lead in dust, soil, sewage, waste, and pesticides (Silbergeld,
1997). The majority of low- and middle-income countries do not have regulations on
the sale of lead in paint (UNEP, 2020). The evidence base though remains thin - a
systematic review into exposure via consumer products found zero studies on either
regulatory, educational, or environmental interventions, and no studies on regulatory
interventions targeting exposure via drinking water (Pfadenhauer et al., 2016).

5.2.2 Targeted remediation

Second, some environmental interventions targeted at high risk populations have
shown large reductions, though few efforts in developing countries have been well
documented. One search for remediation efforts in developing countries (whether
evaluated or not) found just 13 projects in total (O’Brien et al., 2021). Another
systematic review of studies on remediation of lead-contaminated soil found just five
studies, all in North America, and with mixed results (Dobrescu et al., 2022). In
Table 4 we summarise results from three studies Nigeria, Dominican Republic, and
Bangladesh. All were areas of acute exposure and remediation was expensive, but

30



did lead to large falls in blood lead. For example a huge reduction was documented
from efforts in Zamfara, Nigeria, from 149 to 15 (Tirima et al., 2016), implying
improvement in learning by 0.28 standard deviations. A soil remediation effort at
a former lead smelter in Haina, the Dominican Republic, reduced lead levels from
20.6 µg/dL to 5.34 µg/dL, or 0.16 standard deviations in test scores (Ericson et al.,
2018). Both of these large gains came from addressing acutely polluted sites. In
Bangladesh, soil capping, household cleaning, and awareness-raising reduced lead
levels from 22.6 µg/dL to 14.8 µg/dL Chowdhury et al. (2021). All of these studies
rely on before-after designs and so may be biased estimates.

Several studies from the US show results of targeted paint remediation, demon-
strating modest positive effects on blood lead levels (Billings and Schnepel, 2018;
Leighton et al., 2003; Staes et al., 1994). Removing lead pipes has also shown promise
(Pfadenhauer et al., 2016).

5.2.3 Education

Parental education efforts in Georgia and China where exposure is more diffuse and
chronic, have found modest reductions in blood lead. Following striking results from
a nationally representative blood lead testing in Georgia, a government program
of action was implemented to educate parents on the issue. This involved initial
BLL testing, followed by letters sent to all families of children with elevated BLLs,
with advice on how to reduce lead exposure and on dietary habits that can help
reduce BLLs (increased calcium, iron and vitamin C). Parents were advised to visit
a pediatrician to assess physical and mental development and iron deficiency, and
pediatricians were provided training in early detection and management of lead ex-
posure. This reduced BLLs from 9.6 to 6.8 µg/dL (Ruadze et al., 2021), equivalent
to a 0.04 standard deviation improvement in test scores. A parental education in-
tervention in China reduced BLL from 10 to 8 (Shen et al., 2004). A recent study
from Bangladesh has shown promising impacts on behaviour change, but doesn’t yet
report results on blood lead (Jahir et al., 2021).

5.2.4 Medical intervention

Finally, evidence on the provision of calcium supplements has shown mixed results,
from no effect in the US (Markowitz et al., 2004) and Mexico (Ettinger et al., 2009), to
small effects in Nigeria (Keating et al., 2011) and large effects in Indonesia (Syofyan
et al., 2020; Haryanto et al., 2015). Calcium supplementation may therefore hold
promise in contexts in which calcium deficiency is of greater concern.
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Table 4: The implied effect of feasible blood lead reductions on learning

Change in Blood lead High
BLL

Low
BLL

Effect on
Learning
(SD)

Study
Design

One Log Unit (from meta-analysis) 0.12
Reduction from LMIC to HIC levels 5.3 0.5 0.28
Observed reduction in US (1976 to 1990) 14.6 2.8 0.20 Before-after
1. Regulatory intervention
- Leaded Petrol Ban
- India 18.1 12.1 0.05 Before-after
- Kenya 8 5.6 0.04 Before-after
- Pakistan 38 15.6 0.11 Before-after
- South Africa 16 6.4 0.11 Before-after
2. Targeted Remediation
- Soil remediation
- Zamfara, Nigeria 149 15 0.28 Before-after
- Dominican Republic 20.6 5.34 0.16 Before-after
- Bangladesh 22.6 14.8 0.05 Before-after
- Paint remediation
- US (NY) 24.3 12.3 0.08 Diff-in-diff
- US (NC) 17.85 9 0.08 Diff-in-diff
- US (Missouri) 34 29.58 0.02 Diff-in-diff
3. Education (parental)
- Georgia 9.6 6.8 0.04 Before-after
- China 10.1 7.9 0.03 RCT
4. Medical (calcium supplements)
- Indonesia (Medan) 2.1 0.01 0.64 RCT
- Indonesia (Bandung) 13.7 4.95 0.12 RCT
- Nigeria 9.9 8.8 0.01 Case-control
- Mexico 4.1 3.649 0.01 RCT
- US 21.4 21.7 0.00 RCT

Note: The High and Low Blood Lead Levels (BLLs) shown are the average arithmetic
mean for low- and middle-income countries or LMICs (Ericson et al., 2021), high-income countries
or HICs (US EPA, 2015), and the study in China (Shen et al., 2004), geometric means for the
studies in Nigeria (Tirima et al., 2016), Dominican Republic (Ericson et al., 2018), and Bangladesh
(Chowdhury et al., 2021), and medians for Georgia (Ruadze et al., 2021). Geometric means are
generally smaller than arithmetic means. The total effect on learning is calculated as the product
of the log unit gap, and the estimated coefficient of the effect of one log unit on learning outcomes,
taken from our meta-analysis. 32



6 Conclusion

Can widespread lead exposure explain low average learning outcomes in the devel-
oping world? While data coverage is limited in both cases, (a) mean lead exposure
is over 5 µg/dL among children in low- and middle-income countries with reasonably
representative samples, or roughly ten-times higher than the United States, and (b)
learning levels among primary-school aged pupils lag more than one full standard
deviations behind OECD levels in the same set of countries.

We extend existing meta-analyses of studies linking lead exposure to cognitive
outcomes, expanding the traditional focus on IQ to include measures of reading and
mathematics performance among primary-school students. Taken at face value, the
association between lead and learning outcomes in individual-level data across 47
studies suggests that one log unit higher blood lead levels reduces learning levels by
roughly −.23 standard deviations. In a simple model of global learning gaps, this
effect size is sufficient to suggest that observed lead levels explain over half of the
gap in learning outcomes between developing and developed countries.

Raw correlations likely overstate the true causal impact of lead on learning levels,
for at least two reasons. First, we find evidence of publication bias in estimates of
the lead-learning link. Funnel plots reveal striking asymmetry in the distribution
of findings, and clustering of p-values just below conventional significance levels.
Second, it is impossible to rule out a large role for unobserved confounding in the
lead-learning link. We present various pieces of evidence suggesting the true causal
link is much smaller than the published literature.

Meta-analytic regressions controlling for these and other potential sources of bias
suggest that 1 log unit in blood lead levels reduces learning levels by roughly −.12
standard deviations, approximately one half of the naive estimate. Nevertheless, a
true causal effect of this magnitude may remain a viable lever for policy action based
only on education outcomes – in addition to myriad other health benefits beyond the
scope of this paper.

Notably, even with our most conservative estimates, the magnitude of learning
gains achievable through lead eradication is comparable to many popular policy ini-
tiatives to improve education quality in the developing world (eg, Evans and Yuan,
2022 show that the average effect size on learning from RCTs in global education
is 0.1 standard deviations). In cost-benefit terms, a focus on lead exposure is likely
justified solely on education grounds if countries are able to achieve significant reduc-
tions in lead exposure through low-cost, large scale policy reforms such as improved
regulation of the lead paint and lead battery industries.
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Appendix

Figure A1: Estimates of overall population exposure, by region
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Note: This figure shows the share of children with an elevated blood lead level, defined as exceeding
the US CDC reference level of 5 micrograms per deciliter. These estimates are based on our analysis
of raw numbers produced by IHME/UNICEF (Rees and Fuller, 2020), combined with population
estimates from the UN (United Nations, Department of Economic and Social Affairs, Population
Division, 2019).
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Figure A2: Systematic review process

Note: This flowchart shows the process used to identify relevant studies and extract eligible results.
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Figure A3: Sensitivity to exclusion of individual studies
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Note: This figure shows the robustness of our primary specification result result to leaving out
individual studies. The study which substantially weakens the effect when excluded is Taylor

et al. (2017).

49



Figure A4: Funnel Plot for Potential Publication Bias
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Note: This two top figures shows the distribution of study effect sizes and standard errors. An
outlier result (Solon et al., 2008) was excluded to allow for visual inspection. Asymmetry around
the vertical dashed line indicates that there may be publication bias present. Contours show that

"missing" studies are primarily in the region of statistical insignificance - consistent with a
statistical significance filter in publishing leading to this bias. The third figure shows the

distribution of z-stats. The spike just right of the vertical dashed line separating significant and
non-significant results provides further evidence for selection for significant results.
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Figure A5: Funnel Plot by original exposure transformation
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Note: This figure shows funnel plots for all results, faceted by the original functional form used for
the relationship between blood lead and the outcome. An outlier result (Solon et al., 2008) was
excluded to allow for visual inspection. The bottom plot also excludes results which required

additional conversions or imputation. The error resulting from the re-expression process has the
potential to generate a spurious correlation between effect sizes and standard errors, as both

would be biased in the same direction. However, these plots illustrate that this correlation exists
even when results are separated by their original functional form, suggesting that small-study

effects - which in turn can indicate publication bias- are genuine.51



Figure A6: Copas plot

Note: This figure shows Copas method plots where we have collapsed our results, assuming an
intra-study correlation of 1. An outlier result (Solon et al., 2008) was excluded to allow for visual

inspection. The funnel plot (top left) is equivalent to figure A4. The contour plot (top right)
shows results from simulations assuming different selection probabilities for a study with a given
precision. The treatment effect plot (bottom left) shows that the estimated treatment effect is

lower if we assume these selection probabilities to be lower, but even at low selection probabilities,
there is still a substantial negative effect of lead.
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Table A1: Studies on association of lead with IQ

Authors Year Country code Country income group

Alvarez-Ortega et al 2017 COL M
Baghurst et al 1992 USA H
Bellinger et al 1992 USA H
Braun et al 2012 MEX M
Cai et al 2020 CHN M
Canfield et al 2003 USA H
Chen et al 2007 USA H
Chiodo et al 2007 USA H
Cooney et al 1989 AUS H
Counter et al 2005 ECU M
Dantzer et al 2020 USA H
Desrochers-Couture et al 2018 CAN H
Dietrich et al 1993 USA H
Earl et al 2016 AUS H
Fulton et al 1987 GBR H
Hong et al 2015 KOR H
Huang et al 2012 TWN H
Jusko et al 2008 USA H
Kamel et al 2003 EGY M
Kim et al 2009 KOR H
Kim, Yu, and Lee 2010 KOR H
Liu et al 2013 CHN M
Lucchini et al 2012 ITA H
Lucchini et al 2019 ITA H
Menezes-Filho et al 2018 BRA M
Min et al 2009 USA H
Nwobi et al 2019 NGA M
Pan et al 2018 CHN M
Rahman et al 2002 PAK L
Rasoul et al 2012 EGY M
Reuben et al 2017 NZL H
Roy et al 2013 IND M
Ruebner et al 2019 USA H
Schnaas et al 2006 MEX M
Schnaas et al 2000 MEX M
Solon et al 2008 PHL M
Surkan et al 2007 USA H
Taylor et al 2017 GBR H
Vega-Dienstmaier et al 2006 PER M
Zailina et al 2011 MYS M

Note: We include here some three cognitive assessments that are similar but not identical to IQ tests
- Vega-Dienstmaier et al. (2006) use the "Graphic Test of Reasoning" and the "Kohs Block Design
Test", while Cooney et al. (1989) and Braun et al. (2012) use the McCarthy Scales of Children’s
Abilities, General Cognitive Index.
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Table A2: Studies on association of lead with reading and mathematics scores

Authors Year Country code Country Income Group

Reading
Aizer et al 2016 USA H
Bellinger et al 1992 USA H
Blackowicz et al 2016 USA H
Chiodo et al 2007 USA H
Evens et al 2015 USA H
Fulton et al 1987 GBR H
Kamel et al 2003 EGY M
Kim, Yu, and Lee 2010 KOR H
Kordas et al 2006 MEX M
Lanphear et al 2000 USA H
Liu et al 2013 CHN M
McLaine et al 2013 USA H
Min et al 2009 USA H
Shadbegian et al 2019 USA H
Surkan et al 2007 USA H

Maths
Aizer et al 2016 USA H
Bellinger et al 1992 USA H
Blackowicz et al 2016 USA H
Chiodo et al 2007 USA H
Evens et al 2015 USA H
Fulton et al 1987 GBR H
Kamel et al 2003 EGY M
Kim, Yu, and Lee 2010 KOR H
Kordas et al 2006 MEX M
Lanphear et al 2000 USA H
Liu et al 2013 CHN M
Min et al 2009 USA H
Shadbegian et al 2019 USA H
Surkan et al 2007 USA H
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Table A3: Alternative re-expression algorithms

Mean BLL SD BLL True effect (log) RB L D
NHANES 99-2000 3.060 3.042 -0.261 -0.244 -0.148 -0.105
NHANES 2001-02 2.629 2.205 -0.194 -0.263 -0.159 -0.121
NHANES 2011-12 1.953 1.657 -0.219 -0.247 -0.150 -0.113
Canfield et al 2003 9.015 5.488 -0.489 -0.845 -0.512 -0.427
Vega-Dienstmaier et al 2006 10.330 7.360 -0.672 -2.371 -0.750 -0.522
Kordas et al maths 11.793 6.400 -0.405 -0.573 -0.348 -0.299
Kordas et al reading 11.787 6.393 -0.463 -0.674 -0.409 -0.351
Crump et al 2013 14.607 14.230 -0.119 -0.205 -0.125 -0.089

Note: In this table we assess the performance of three different algorithms used to re-express effects estimated with linear models
in terms of log units. We first use microdata to estimate directly the effect of a log unit increase in BLL on standardised test
score outcomes (column 2). We then estimate the effect of a linear unit increase in BLL, and apply the algorithms to re-express
the effect estimated with a linear model in terms of log units (columns 3-5). RB indicates results from the Rodríguez-Barranco
et al. (2017) algorithm, L from the Linakis et al. (2021) algorithm, and D from the Dzierlenga et al. (2020) algorithm. The root
mean squared error indicated that the Linakis et al. (2021) algorithm clearly performed best.
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Table A4: Alternative adjustments for publication-bias

(1) (2) (3) (4) (5)
None Egger Non-linear Trim-and-fill P-uniform*

Effect Standard Error -1.470***
(0.290)

Effect Variance -0.252
(0.188)

Constant -0.212*** -0.085*** -0.207*** -0.157*** -0.178***
(0.024) (0.029) (0.023) (0.026) (0.031)

N (Studies) 47 47 47 47 47

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. This table shows four
alternative standard approaches for adjusting for publication bias, applied to our results when

unadjusted and averaged by study (column 1) (we don’t use the adjusted result, as the
trim-and-fill and p-uniform methods would not be applicable): in column 2, the Egger intercept

(adjusting for the study standard error) (Egger et al., 1997); in column 3, the PET-PEESE
nonlinear intercept (adjusting for the variance) (Stanley and Doucouliagos, 2014), also used in our

main specification; in column 4, the trim-and-fill method (attempting to ’fill in’ hypothetical
results given no publication bias) (Duval and Tweedie, 2000); and in column 5, the p-uniform*

method (Aert and Assen, 2018).
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Table A5: Bivariate meta-regressions

(1) (2) (3) (4) (5) (6) (7) (8)

Not logarithmic -0.042
(0.050)

Mean blood lead -0.008**
(0.004)

No control for parent ed/IQ -0.173***
(0.036)

No control for family income -0.123***
(0.046)

Exposure: not average or lag -0.036
(0.049)

Outcome: Math 0.021
(0.055)

Outcome: Reading -0.015
(0.050)

High income country 0.035
(0.057)

Constant -0.227*** -0.204*** -0.175*** -0.155*** -0.169*** -0.212*** -0.233*** -0.255***
(0.025) (0.033) (0.033) (0.021) (0.023) (0.036) (0.032) (0.047)

N (Estimates) 286 286 286 286 286 286 286 286
N (Studies) 47 47 47 47 47 47 47 47

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. We use the Hedges et al. (2010) estimator to
account for dependence between multiple estimates from the same study. The dependent variable in each case is the

standardized effect size of a natural log unit increase in lead exposure on the cognitive outcome.
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Table A6: Sensitivity

(1) (2) (3)

Imputed Outcome SD -0.041
(0.066)

Constant -0.115 -0.094 -0.159
(0.100) (0.110) (0.115)

N (Estimates) 286 286 212
N (Studies) 47 47 30

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. We use the Hedges
et al. (2010) estimator to account for dependence between multiple estimates from the same study.
This table shows our adjusted meta-regression estimate (column 1), the estimate after additionally
including a dummy for whether a population rather than sample standard deviation was used to
calculate an effect size (column 2), and the estimate in a sub-sample that excludes those in which
various imputations had to be made (column 3). These exclusions include: results in which we

impute mean blood lead levels, results in which we calculate the standard error using a reported
p-value, and results where the effect size is converted from a reported correlation coefficient.
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